Amortized Analysis

A Motivating Analogy

Doing the Dishes

* What do I do with
a dirty dish or
kitchen utensil?

 Option 1: Wash
it by hand.

 Option 2: Put it
in the dishwasher
rack, then run
the dishwasher if
it’s full.

Doing the Dishes

 Washing every individual
dish and utensil by hand
is way slower than using
the dishwasher, but I
always have access to my
plates and kitchen
utensils.

 Running the dishwasher
is faster in aggregate, but
means I may have to wait
a bit for dishes to be
ready.

* (This is an example of a
tradeoff between
throughput and
latency.)

Key Idea: Design data structures that
trade per-operation efficiency tor
overall efficiency.

Where We're Going

- Amortized Analysis (Today)
A little accounting trickery never hurt anyone, right?
 Binomial Heaps (Thursday)

» A fast, flexible priority queue that’s a great building block
for more complicated structures.

 Fibonacci Heaps (Next Tuesday)

» A priority queue optimized for graph algorithms that, at
least in theory, leads to optimal implementations.

* Disjoint-Set Forests (Next Thursday)

» A data structure for Kruskal’s algorithm that is shockingly
fast in an amortized sense.

Outline for Today

« Amortized Analysis

* Trading worst-case efficiency for aggregate
efficiency.

« Examples of Amortization
 Three motivating data structures and algorithms.
 Potential Functions
* Quantifying messiness and formalizing costs.
 Performing Amortized Analyses

« How to show our examples are indeed fast.

Three Examples

Two-Stack Queues Dynamic Arrays

g
\

Building B-I'rees

The Two-Stack Queue

e Maintain an In stack and an Out stack.

* To enqueue an element, push it onto the
In stack.

 To dequeue an element:

* If the Out stack is nonempty, pop it.

« If the Out stack is empty, pop elements from
the I'n stack, pushing them into the Out
stack. Then dequeue as usual.

The Two-Stack Queue

Our dirty dishes
are piling up
because we didn’t
do any work to
clean them when
we added them in.

4
3
2

\ 1

Clean Dirty
Dishes Dishes

The Two-Stack Queue

We just cleaned up
our entire mess
and are back to a

w N

4

Clean
Dishes

pristine state.

*
Dirty
Dishes

The Two-Stack Queue

« Each enqueue takes time O(1).
* Just push an item onto the In stack.
* Dequeues can vary in their runtime.

* Could be O(1) if the Out stack isn’t empty.
* Could be ©(n) if the Out stack is empty.

Out In

The Two-Stack Queue

« Intuition: We only do expensive dequeues after a
long run of cheap enqueues.

 Think “dishwasher:” we very slowly introduce a lot
of dirty dishes that get cleaned up all at once.

* Provided we clean up all the dirty dishes at once,
and provided that dirty dishes accumulate slowly,
this is a fast strategy!

Out In

The Two-Stack Queue

 Key Fact: Any series of n operations on an (initially
empty) two-stack queue will take time O(n).

- Why?

 Each item is pushed into at most two stacks and
popped from at most two stacks.

 Adding up the work done per element across all n
operations, we can do at most O(n) work.

Out In

The Two-Stack Queue

* It’s correct but misleading to say the cost of a dequeue is O(n).
« This is comparatively rare.
* It’s wrong, but useful, to pretend the cost of a dequeue is O(1).

 Some operations take more time than this.

« However, if we pretend each operation takes time O(1), then the sum
of all the costs never underestimates the total.

* Question: What’s an honest, accurate way to describe the
runtime of the two-stack queue?

Out In

Dynamic Arrays

« Adynamic array is the most common way to
implement a list of values.

 Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

He L1 Be B C N O

L

Dynamic Arrays

« Adynamic array is the most common way to
implement a list of values.

 Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

He L1 Be B C N O F Ne Na Mg Al Si P S

=

Dynamic Arrays

 Most appends to a dynamic array take time O(1).

* Infrequently, we do ©(n) work to copy all n elements from
the old array to a new one.

e Think “dishwasher:”

 We slowly accumulate “messes” (filled slots).
 We periodically do a large “cleanup” (copying the array).

* Claim: The cost of doing n appends to an initially empty
dynamic array is always O(n).

21

He L1 Be B C N O F Ne Na Mg Al Si P S

Dynamic Arrays

* Claim: Appending n elements always takes time O(n).
* The array doubles at sizes 29, 2%, 22, ..., etc.

* The very last doubling is at the largest power of two less
than n. This is at most 2l°s:", (Do you see why?)

» Total work done across all doubling is at most
20 + 21 + ...+ 2[10gsz — leogsz+1 _ 1

< 210g2n+ 1
H

= 2n.

He L1 Be B C N O F Ne Na Mg Al Si P S

Dynamic Arrays

 It’s correct but misleading to say an append costs O(n).
« This is comparatively rare.
« It’s wrong, but useful, to pretend an append costs O(1).

« Some operations take more time than this.

« However, pretending each operation takes O(1) time never
underestimates the true total runtime.

* Question: What’s an honest, accurate way to describe
the runtime of the dynamic array?

21

He L1 Be B C N O F Ne Na Mg Al Si P S

Building B-Trees

* You're given a sorted list of n values and a value of b.
« What'’s the most efficient way to construct a B-tree of order

b holding these n values?

* One Option: Think really hard, calculate the shape of a B-
tree of order b with n elements in it, then place the items

into that B-tree in sorted order.
 Is there an easier option?

3 7

1 5 S

11

0 8 1213

Building B-Trees

» Idea 1: Insert the items into an empty B-tree
in sorted order.

* Cost: Q(n logy n), due to the top-down search.
« Can we do better?

1 2 ésé 8 9

Building B-Trees

e Idea 2: Since all insertions will happen at the
rightmost leaf, store a pointer to that leat. Add new
values by appending to this leaf, then doing any
necessary splits.

* Question: How fast is this?

1 5 9 11

0 8 1213

Building B-Trees

« The cost of an insert varies based on the shape of the tree.

 If no splits are required, the cost is O(1).
 If one split is required, the cost is O(b).
« If we have to split all the way up, the cost is O(b logs n).

* Using our worst-case cost across n inserts gives a runtime
bound of O(nb logs n)

* Claim: The cost of n inserts is always O(n).

3 7

1 5 9 11

0 8 1213

Building B-Trees

« Of all the n insertions into the tree, a roughly !/, fraction
will split a node in the bottom layer of the tree (a leaf).

» Of those, roughly a !/, fraction will split a node in the
layer above that.

» Of those, roughly a !/, fraction will split a node in the
layer above that.

e (etc.)

1 5 9 11

0 8 1213

Building B-Trees

* Total number of splits:

1
|
©
—
e
~—

= o (1)
» Total cost of those splits: O(n).

Building B-Trees

* It is correct but misleading to say the cost of an insert is
O(b logy n).

« This is comparatively rare.
It is wrong, but useful, to pretend that the cost of an insert is O(1).

 Some operations take more time than this.

« However, pretending each insert takes time O(1) never underestimates
the total amount of work done across all operations.

* Question: What’s an honest, accurate way to describe the cost of
inserting one more value?

3 7
/v

1 5 9 11

S
o 2 8 12 13

Amortized Analysis

The Setup

« We now have three examples of data
structures where

» individual operations may be slow, but
* any series of operations is fast.

* Giving weak upper bounds on the cost of
each operation is not useful for making
predictions.

« How can we clearly communicate when a
situation like this one exists?

Amortized Analysis

 Key Idea: Assign each operation a (fake!) cost
called its amortized cost such that, for any
series of operations performed, the following is
true:

Y amortized-cost >), real-cost

« Amortized costs shift work backwards from
expensive operations onto cheaper ones.

 Cheap operations are artificially made more
expensive to pay for future cleanup work.

 Expensive operations are artificially made cheaper
by shifting the work backwards.

Where We're Going

e The amortized cost of
an enqueue or dequeue

into a two-stack queue
1s O(1).

 Any sequence of n
operations on a two-
stack queue will take
time

n-0(1) = 0(n).

« However, each
individual operation
may take more than
O(1) time to complete.

Two-Stack Queues

Where We're Going

 The amortized cost
of appending to a

dynamic array is O(1).

* Any sequence of n
appends to a dynamic
array will take time

n-0(1) =0(n).

« However, each
individual operation
may take more than

O(1) time to complete.

Dynamic Arrays

Where We're Going

 The amortized cost of
inserting a new element
at the end of a B-tree,
assuming we have a

pointer to the rightmost
leaf, is O(1).

* Any sequence of n
appends will take time

n-0(1l) =0(n).

« However, each
individual operation
may take more than
O(1) time to complete.

g
i U

Building B-Irees

Formalizing This Idea

Assigning Amortized Costs

 The approach we’ve taken so far for assigning
amortized costs is called an aggregate analysis.

* Directly compute the maximum possible work done across
any sequence of operations, then divide that by the
number of operations.

« This approach works well here, but it doesn’t scale
well to more complex data structures.

 What if different operations contribute to / clean up
messes in different ways?

« What if it’s not clear what sequence is the worst-case
sequence of operations?

* In practice, we tend to use a different strategy called
the potential method to assign amortized costs.

Potential Functions

* To assign amortized
costs, we’ll need to
measure how “messy”
the data structure is.

 For each data
structure, we define a
potential function ©
that, In a sense,
“quantifies messiness.”

e ® is small when the data
structure is “clean,” and

@ is large when the data
structure is “messy.”

Out In

Low ® Two-Stack Queue

Out In

High ® Two-Stack Queue

Potential Functions

* To assign amortized
costs, we’ll need to
measure how “messy”
the data structure is.

 For each data
structure, we define a
potential function ©
that, In a sense,
“quantifies messiness.”

e ® is small when the data
structure is “clean,” and

@ is large when the data
structure is “messy.”

Low ® Dynamic Array

A

Y

i HelLilsel B | ¢ | n

0

High ® Dynamic Array

Potential Functions

* Once we have @, we can start looking, for each
operation, at how ® changes.

« If an operation makes things “messier,” then ® increases.
« If an operation makes things “cleaner,” then ® decreases.
« What we want to have happen:

« If an operation increases ®, we artificially raise its cost.
« If an operation decreases ®, we artificially lower its cost.

- Why?

Potential Functions

 Define the amortized cost of an operation to be
amortized-cost = real-cost + k - A®

where k is a constant under our control and A® is
the difference between ® just after the operation
finishes and @ just before the operation started:

AD = (I)after - (I)before
 Intuitively:

* If ® increases, the data structure got “messier,” and the
amortized cost is higher than the real cost to account for
future cleanup costs.

« If ® decreases, the data structure got “cleaner,” and the
amortized cost is lower than the real cost

Why This Works

Y amortized - cost > [real-cost + k-AD)

Y real-cost + k-), A®

> real-cost + k-(®__,—®

end start)

> » real-cost

Let’s make two assumptions:

O = 0.
Do = 0.

The Story So Far

 We will assign amortized costs to each operation
such that

Y amortized-cost >) real-cost
* To do so, define a potential function ® such that

@ measures how “messy” the data structure is,
* Oy = 0, and
« & =0.
 Then, define amortized costs of operations as
amortized-cost = real-cost + k - A®

for a choice of k under our control.

Theorem: The amortized cost of any enqueue or dequeue operation on a
two-stack queue is O(1).

Proof: Let ® be the height of the In stack in the two-stack queue. Each
enqueue operation does a single push and increases the height of the In
stack by one. Therefore, its amortized cost is

O(l) + k- AD=0(1)+ k-1=0(0).

Now, consider a dequeue operation. If the Out stack is nonempty, then
the dequeue does O(1) work and does not change ®. Its cost is therefore

O(1)+k-AD=0(1)+k-0=0().

Otherwise, the Out stack is empty. Suppose the In stack has n elements.
The dequeue does O(n) work to pop the elements from the In stack and
push them onto the Out stack, followed by one additional pop for the
dequeue. This is O(n) total work.

At the beginning of this operation, we have ® = n. At the end of this
operation, we have ® = 0. Therefore, A® = -n, so the amortized cost of
the operation is

On)+ k--n=0(),

assuming we pick k to cancel out the constant factor hidden in the O(n)
term. W

Analyzing Dynamic Arrays

* Goal: Choose a potential function ® such

that the amortized cost of an append is
O(1).

» Initial (wrong!) guess: Set ® to be the
number of free slots left in the array.

H He LiiBe B C N O F

L‘

Analyzing Dynamic Arrays

* Intuition: ® should measure how
“messy” the data structure is.

 Having lots of free slots means there’s very
little mess.

 Having few free slots means there’s a lot of
mess.

 We basically got our potential function
backwards. Oops.

* Question: What should ® be?

Analyzing Dynamic Arrays

« The amortized cost of an append is
amortized-cost = real-cost + k - A®.

« When we double the array size, our real cost is ©(n). We
need A® to be something like -n.

e Goal: Pick ® so that

e when there are no slots left, ® = n, and
» right after we double the array size, ® = 0.

« With some trial and error, we can come up with
® = #elems - #free-slots

H He L1 Be B C N O

Theorem: The amortized cost of an append to a dynamic array is O(1).

Proof: Suppose the dynamic array has initial capacity 2C = O(1). Then,
define ® = max{ O, n - #free-slots }, where n is the number of elements
stored in the dynamic array. Note that for n < C that an append simply
fills in a free slot and leaves ® = 0, so the amortized cost of such an
append is O(1). Otherwise, we have n > C and ® = n - #free-slots.

Consider any append. If the append does not trigger a resize, it does
O(1) work, increases n by one, and decreases #free-slots by one, so the
amortized cost is

O(l) + k- AD=0(1) + k-2 =0(0).

Otherwise, the operation copies n elements into a new array twice as
large as before, increasing the number of free slots to n, then fills one of
those slots. Just before the operation we had ® = n, and just after the
operation we have ® = 2. Therefore, the amortized cost is

On)+k-Ad=0(n)+k-(2-n)=0(n)-nk + 2k,

which can be made to equal O(1) by choosing the the k term to match
the constant hidden in the O(n) term. B

Some Exercises

* Suppose we grow the array not by a factor of
two, but by a fixed constant a« > 1. Find a
choice of ® so that the amortized cost of an
append is O(1).

 Suppose we also allow elements to be
removed from the array, and when it’s % full
we shrink it by a factor of two. Find a choice
of ® so the amortized cost of appending or
removing the last element is O(1).

Building B-Trees

» Algorithm: Store a pointer to the rightmost
leatf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

O 11\
% 1213

Building B-Trees

« What is the actual cost of appending an element?

« Suppose that we perform splits at L layers in the tree.
« Each split takes time ©(b) to copy and move keys around.
» Total cost: @(bL).

* Goal: Pick a potential function ® so that we can
offset this cost and make each append cost
amortized O(1).

/37

TSR REE

Building B-Trees

* Our potential function should, intuitively, quantify how
“messy” our data structure is.

e Some observations:

 We only care about nodes in the right spine of the tree.

* Nodes in the right spine slowly have keys added to them.
When they split, they lose (about) half of their keys.

» Idea: Set ® to be the number of keys in the right spine
of the tree.

3 7

12 13

Building B-Trees

* Let ® be the number of keys on the right spine.

* Each split moves (roughly) half the keys from
the split node into a node off the right spine.

 Change in potential per split: -O(b).

e Net A®: -O(bL).
O 11\
% 1213

Building B-Trees

» Actual cost of an append that does L
splits: O(bL).

 A® for that operation: -©(bL).
« Amortized cost: O(1).

O 11\
% 1213

Theorem: The amortized cost of appending to a B-tree by inserting
it into the rightmost leaf node and applying fixup rules is O(1).

Proof: Assume we are working with a B-tree of order b. Let ® be
the number of nodes on the right spine of the B-tree.

Suppose we insert a value into the tree using the algorithm
described above. Suppose this causes L nodes to be split. Each of
those splits requires ©(b) work for a net total of ©(bL) work.

Each of those L splits moves ©(b) keys off of the right spine of the
tree, decreasing ® by ©(b) for a net drop in potential of -©(bL). In
the layer just above the last split, we add one more key into a node,
increasing ® by one. Therefore, A® = -O(bL.).

Overall, this tells us that the amortized cost of inserting a key this
way 1S

O(bL) + k- A® = O(bL) - k - ©(bL),

which can be made to be O(1) by choosing k to equate the constants
hidden in the O and © terms. B

More to Explore

* You can implement a deque (a doubly-ended queue)
using a B-tree with pointers to the first and last leaves.

« This is sometimes called a finger tree.

« Finger trees are used extensively in purely functional
programming languages.

By extending the analysis from here, you can show the

amortized cost of appending or removing from each end of
the finger tree is O(1).

« Red/black trees are modeled on 2-3-4 trees. You can

build a red/black tree from n sorted keys in time O(n)
this way.

 Great exercise: Explore how to do this, and work out what
choice of ® to make.

To Summarize

Amortized Analysis

 Some data structures accumulate messes slowly,
then clean up those messes in single, large steps.

 We can assign amortized costs to operations.
These are fake costs such that summing up the
amortized costs never underestimates the sum of
the real costs.

 To do so, we define a potential function ® that,
intuitively, measures how “messy” the data
structure is. We then set

amortized-cost = real-cost + k - A®D.

* For simplicity, we assume that ® is nonnegative and
that ® for an empty data structure is zero.

Next Time

« Binomial Heaps
* A very clever way to build a priority queue.
 Lazy Binomial Heaps

* Designing for amortization.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

