
  

Amortized Analysis



  

A Motivating Analogy



  

Doing the Dishes
● What do I do with 

a dirty dish or 
kitchen utensil?

● Option 1: Wash 
it by hand.

● Option 2: Put it 
in the dishwasher 
rack, then run 
the dishwasher if 
it’s full.



  

Doing the Dishes
● Washing every individual 

dish and utensil by hand 
is way slower than using 
the dishwasher, but I 
always have access to my 
plates and kitchen 
utensils.

● Running the dishwasher 
is faster in aggregate, but 
means I may have to wait 
a bit for dishes to be 
ready.

● (This is an example of a 
tradeoff between 
throughput and 
latency.)



  

Key Idea: Design data structures that 
trade per-operation efficiency for

overall efficiency.



  

Where We’re Going
● Amortized Analysis (Today)

● A little accounting trickery never hurt anyone, right?
● Binomial Heaps (Thursday)

● A fast, flexible priority queue that’s a great building block 
for more complicated structures.

● Fibonacci Heaps (Next Tuesday)
● A priority queue optimized for graph algorithms that, at 

least in theory, leads to optimal implementations.
● Disjoint-Set Forests (Next Thursday)

● A data structure for Kruskal’s algorithm that is shockingly 
fast in an amortized sense.



  

Outline for Today
● Amortized Analysis

● Trading worst-case efficiency for aggregate 
efficiency.

● Examples of Amortization
● Three motivating data structures and algorithms.

● Potential Functions
● Quantifying messiness and formalizing costs.

● Performing Amortized Analyses
● How to show our examples are indeed fast.



  

Three Examples



  

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees



  

The Two-Stack Queue
● Maintain an In stack and an Out stack.
● To enqueue an element, push it onto the 

In stack.
● To dequeue an element:

● If the Out stack is nonempty, pop it.
● If the Out stack is empty, pop elements from 

the In stack, pushing them into the Out 
stack. Then dequeue as usual.



  

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2
3
4Our dirty dishes 

are piling up 
because we didn’t 

do any work to 
clean them when 

we added them in.



  

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

We just cleaned up 
our entire mess 

and are back to a 
pristine state.



  

The Two-Stack Queue
● Each enqueue takes time O(1).

● Just push an item onto the In stack.
● Dequeues can vary in their runtime.

● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.

n
n–1

3
...

Out In



  

The Two-Stack Queue
● Intuition: We only do expensive dequeues after a 

long run of cheap enqueues.
● Think “dishwasher:” we very slowly introduce a lot 

of dirty dishes that get cleaned up all at once.
● Provided we clean up all the dirty dishes at once, 

and provided that dirty dishes accumulate slowly, 
this is a fast strategy!

In
n
n–1

3
...

Out



  

The Two-Stack Queue
● Key Fact: Any series of n operations on an (initially 

empty) two-stack queue will take time O(n).
● Why?
● Each item is pushed into at most two stacks and 

popped from at most two stacks.
● Adding up the work done per element across all n 

operations, we can do at most O(n) work.

In
n
n–1

3
...

Out



  

The Two-Stack Queue
● It’s correct but misleading to say the cost of a dequeue is O(n).

● This is comparatively rare.
● It’s wrong, but useful, to pretend the cost of a dequeue is O(1).

● Some operations take more time than this.
● However, if we pretend each operation takes time O(1), then the sum 

of all the costs never underestimates the total.
● Question: What’s an honest, accurate way to describe the 

runtime of the two-stack queue?

In
n
n–1

3
...

Out



  

Dynamic Arrays

H He Li Be B C N O

● A dynamic array is the most common way to 
implement a list of values.

● Maintain an array slightly bigger than the one 
you need. When you run out of space, double 
the array size and copy the elements over.



  

Dynamic Arrays

H He Li Be B C N O F Ne Na Mg Al Si P S

● A dynamic array is the most common way to 
implement a list of values.

● Maintain an array slightly bigger than the one 
you need. When you run out of space, double 
the array size and copy the elements over.



  

Dynamic Arrays

H He Li Be B C N O F Ne Na Mg Al Si P S

● Most appends to a dynamic array take time O(1).
● Infrequently, we do Θ(n) work to copy all n elements from 

the old array to a new one.
● Think “dishwasher:”

● We slowly accumulate “messes” (filled slots).
● We periodically do a large “cleanup” (copying the array).

● Claim: The cost of doing n appends to an initially empty 
dynamic array is always O(n).



  

Dynamic Arrays
● Claim: Appending n elements always takes time O(n).
● The array doubles at sizes 20, 21, 22, …, etc.
● The very last doubling is at the largest power of two less 

than n. This is at most 2⌊log₂ n⌋. (Do you see why?)
● Total work done across all doubling is at most

   20 + 21 + … + 2⌊log₂ n⌋ = 2⌊log₂ n⌋ + 1 – 1
            ≤ 2log₂ n + 1

            = 2n.
H He Li Be B C N O F Ne Na Mg Al Si P S



  

Dynamic Arrays
● It’s correct but misleading to say an append costs O(n).

● This is comparatively rare.
● It’s wrong, but useful, to pretend an append costs O(1).

● Some operations take more time than this.
● However, pretending each operation takes O(1) time never 

underestimates the true total runtime.
● Question: What’s an honest, accurate way to describe 

the runtime of the dynamic array?

H He Li Be B C N O F Ne Na Mg Al Si P S



  

Building B-Trees
● You’re given a sorted list of n values and a value of b.
● What’s the most efficient way to construct a B-tree of order 

b holding these n values?
● One Option: Think really hard, calculate the shape of a B-

tree of order b with n elements in it, then place the items 
into that B-tree in sorted order.

● Is there an easier option?

0 2 4 6

1 5

108 12 13

9 11

3 7



  

Building B-Trees
● Idea 1: Insert the items into an empty B-tree 

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?
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Building B-Trees
● Idea 2: Since all insertions will happen at the 

rightmost leaf, store a pointer to that leaf. Add new 
values by appending to this leaf, then doing any 
necessary splits.

● Question: How fast is this?
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Building B-Trees
● The cost of an insert varies based on the shape of the tree.

● If no splits are required, the cost is O(1).
● If one split is required, the cost is O(b).
● If we have to split all the way up, the cost is O(b logb n).

● Using our worst-case cost across n inserts gives a runtime 
bound of O(nb logb n)

● Claim: The cost of n inserts is always O(n).
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Building B-Trees
● Of all the n insertions into the tree, a roughly 1/b fraction 

will split a node in the bottom layer of the tree (a leaf).
● Of those, roughly a 1/b fraction will split a node in the 

layer above that.
● Of those, roughly a 1/b fraction will split a node in the 

layer above that.
● (etc.)
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Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb )



  

Building B-Trees
● It is correct but misleading to say the cost of an insert is 

O(b logb n).
● This is comparatively rare.

● It is wrong, but useful, to pretend that the cost of an insert is O(1).
● Some operations take more time than this.
● However, pretending each insert takes time O(1) never underestimates 

the total amount of work done across all operations.
● Question: What’s an honest, accurate way to describe the cost of 

inserting one more value?
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Amortized Analysis



  

The Setup
● We now have three examples of data 

structures where
● individual operations may be slow, but
● any series of operations is fast.

● Giving weak upper bounds on the cost of 
each operation is not useful for making 
predictions.

● How can we clearly communicate when a 
situation like this one exists?



  

Amortized Analysis
● Key Idea: Assign each operation a (fake!) cost 

called its amortized cost such that, for any 
series of operations performed, the following is 
true:

● Amortized costs shift work backwards from 
expensive operations onto cheaper ones.
● Cheap operations are artificially made more 

expensive to pay for future cleanup work.
● Expensive operations are artificially made cheaper 

by shifting the work backwards.

∑ amortized -cost ≥ ∑ real-cost



  

Where We’re Going
● The amortized cost of 

an enqueue or dequeue 
into a two-stack queue 
is O(1).

● Any sequence of n 
operations on a two-
stack queue will take 
time

n · O(1) = O(n).
● However, each 

individual operation 
may take more than 
O(1) time to complete.

Two-Stack Queues



  

Dynamic Arrays

A B C D E F G H I

Where We’re Going
● The amortized cost 

of appending to a 
dynamic array is O(1).

● Any sequence of n 
appends to a dynamic 
array will take time

n · O(1) = O(n).
● However, each 

individual operation 
may take more than 
O(1) time to complete.



  

Building B-Trees

Where We’re Going
● The amortized cost of 

inserting a new element 
at the end of a B-tree, 
assuming we have a 
pointer to the rightmost 
leaf, is O(1).

● Any sequence of n 
appends will take time

n · O(1) = O(n).
● However, each 

individual operation 
may take more than 
O(1) time to complete.



  

Formalizing This Idea



  

Assigning Amortized Costs
● The approach we’ve taken so far for assigning 

amortized costs is called an aggregate analysis.
● Directly compute the maximum possible work done across 

any sequence of operations, then divide that by the 
number of operations.

● This approach works well here, but it doesn’t scale 
well to more complex data structures.
● What if different operations contribute to / clean up 

messes in different ways?
● What if it’s not clear what sequence is the worst-case 

sequence of operations?
● In practice, we tend to use a different strategy called 

the potential method to assign amortized costs.



  

Potential Functions
● To assign amortized 

costs, we’ll need to 
measure how “messy” 
the data structure is.

● For each data 
structure, we define a 
potential function Φ 
that, in a sense, 
“quantifies messiness.”
● Φ is small when the data 

structure is “clean,” and
● Φ is large when the data 

structure is “messy.”

 

In
 

Out

High Φ Two-Stack Queue

 

In
 

Out

Low Φ Two-Stack Queue



  

Potential Functions
● To assign amortized 

costs, we’ll need to 
measure how “messy” 
the data structure is.

● For each data 
structure, we define a 
potential function Φ 
that, in a sense, 
“quantifies messiness.”
● Φ is small when the data 

structure is “clean,” and
● Φ is large when the data 

structure is “messy.”

Low Φ Dynamic Array

High Φ Dynamic Array

H He Li Be

H He Li Be B C N O



  

Potential Functions
● Once we have Φ, we can start looking, for each 

operation, at how Φ changes.
● If an operation makes things “messier,” then Φ increases.
● If an operation makes things “cleaner,” then Φ decreases.

● What we want to have happen:
● If an operation increases Φ, we artificially raise its cost.
● If an operation decreases Φ, we artificially lower its cost.

● Why?



  

Potential Functions
● Define the amortized cost of an operation to be

amortized-cost = real-cost + k · ΔΦ
where k is a constant under our control and ΔΦ is 
the difference between Φ just after the operation 
finishes and Φ just before the operation started:

ΔΦ = Φafter - Φbefore

● Intuitively:
● If Φ increases, the data structure got “messier,” and the 

amortized cost is higher than the real cost to account for 
future cleanup costs.

● If Φ decreases, the data structure got “cleaner,” and the 
amortized cost is lower than the real cost 



  

Why This Works

Let’s make two assumptions:
 

Φ ≥ 0.
Φstart = 0.

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ )

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost



  

The Story So Far
● We will assign amortized costs to each operation 

such that

● To do so, define a potential function Φ such that
● Φ measures how “messy” the data structure is,
● Φstart = 0, and
● Φ ≥ 0.

● Then, define amortized costs of operations as
amortized-cost = real-cost + k · ΔΦ

for a choice of k under our control.

∑ amortized -cost ≥ ∑ real-cost



  

Theorem: The amortized cost of any enqueue or dequeue operation on a 
two-stack queue is O(1).
 

Proof: Let Φ be the height of the In stack in the two-stack queue. Each 
enqueue operation does a single push and increases the height of the In 
stack by one. Therefore, its amortized cost is
 

O(1) + k · ΔΦ = O(1) + k · 1 = O(1).
 

Now, consider a dequeue operation. If the Out stack is nonempty, then 
the dequeue does O(1) work and does not change Φ. Its cost is therefore
 

O(1) + k · ΔΦ = O(1) + k · 0 = O(1).
 

Otherwise, the Out stack is empty. Suppose the In stack has n elements. 
The dequeue does O(n) work to pop the elements from the In stack and 
push them onto the Out stack, followed by one additional pop for the 
dequeue. This is O(n) total work.
 

At the beginning of this operation, we have Φ = n. At the end of this 
operation, we have Φ = 0. Therefore, ΔΦ = -n, so the amortized cost of 
the operation is
 

O(n) + k · -n = O(1),
 

assuming we pick k to cancel out the constant factor hidden in the O(n) 
term. ■



  

Analyzing Dynamic Arrays
● Goal: Choose a potential function Φ such 

that the amortized cost of an append is 
O(1).

● Initial (wrong!) guess: Set Φ to be the 
number of free slots left in the array.

FH He Li Be B C N O



  

Analyzing Dynamic Arrays
● Intuition: Φ should measure how 

“messy” the data structure is.
● Having lots of free slots means there’s very 

little mess.
● Having few free slots means there’s a lot of 

mess.
● We basically got our potential function 

backwards. Oops. 😃
● Question: What should Φ be?



  

Analyzing Dynamic Arrays
● The amortized cost of an append is

amortized-cost = real-cost + k · ΔΦ.
● When we double the array size, our real cost is Θ(n). We 

need ΔΦ to be something like -n.
● Goal: Pick Φ so that

● when there are no slots left, Φ ≈ n, and
● right after we double the array size, Φ ≈ 0.

● With some trial and error, we can come up with
Φ = #elems - #free-slots 

H He Li Be B C N O



  

Theorem: The amortized cost of an append to a dynamic array is O(1).
 

Proof: Suppose the dynamic array has initial capacity 2C = O(1). Then, 
define Φ = max{ 0, n - #free-slots }, where n is the number of elements 
stored in the dynamic array. Note that for n < C that an append simply 
fills in a free slot and leaves Φ = 0, so the amortized cost of such an 
append is O(1). Otherwise, we have n > C and Φ = n - #free-slots.

Consider any append. If the append does not trigger a resize, it does 
O(1) work, increases n by one, and decreases #free-slots by one, so the 
amortized cost is

O(1) + k · ΔΦ = O(1) + k · 2 = O(1).

Otherwise, the operation copies n elements into a new array twice as 
large as before, increasing the number of free slots to n, then fills one of 
those slots. Just before the operation we had Φ = n, and just after the 
operation we have Φ = 2. Therefore, the amortized cost is

O(n) + k · ΔΦ = O(n) + k · (2 – n) = O(n) – nk + 2k,

which can be made to equal O(1) by choosing the the k term to match 
the constant hidden in the O(n) term. ■



  

Some Exercises
● Suppose we grow the array not by a factor of 

two, but by a fixed constant α > 1. Find a 
choice of Φ so that the amortized cost of an 
append is O(1).

● Suppose we also allow elements to be 
removed from the array, and when it’s ¼ full 
we shrink it by a factor of two. Find a choice 
of Φ so the amortized cost of appending or 
removing the last element is O(1).



  

Building B-Trees
● Algorithm: Store a pointer to the rightmost 

leaf. To add an item, append it to the 
rightmost leaf, splitting and kicking the 
median key up if we are out of space.
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Building B-Trees
● What is the actual cost of appending an element?

● Suppose that we perform splits at L layers in the tree.
● Each split takes time Θ(b) to copy and move keys around.
● Total cost: Θ(bL).

● Goal: Pick a potential function Φ so that we can 
offset this cost and make each append cost 
amortized O(1).
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Building B-Trees
● Our potential function should, intuitively, quantify how 

“messy” our data structure is.
● Some observations:

● We only care about nodes in the right spine of the tree.
● Nodes in the right spine slowly have keys added to them. 

When they split, they lose (about) half of their keys.
● Idea: Set Φ to be the number of keys in the right spine 

of the tree.
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Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from 

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).
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Building B-Trees
● Actual cost of an append that does L 

splits: O(bL).
● ΔΦ for that operation: -Θ(bL).
● Amortized cost: O(1).
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Theorem: The amortized cost of appending to a B-tree by inserting 
it into the rightmost leaf node and applying fixup rules is O(1).
 

Proof: Assume we are working with a B-tree of order b. Let Φ be 
the number of nodes on the right spine of the B-tree.

Suppose we insert a value into the tree using the algorithm 
described above. Suppose this causes L nodes to be split. Each of 
those splits requires Θ(b) work for a net total of Θ(bL) work.

Each of those L splits moves Θ(b) keys off of the right spine of the 
tree, decreasing Φ by Θ(b) for a net drop in potential of -Θ(bL). In 
the layer just above the last split, we add one more key into a node, 
increasing Φ by one. Therefore, ΔΦ = -Θ(bL).

Overall, this tells us that the amortized cost of inserting a key this 
way is

Θ(bL) + k · ΔΦ = Θ(bL) – k · Θ(bL),

which can be made to be O(1) by choosing k to equate the constants 
hidden in the O and Θ terms. ■



  

More to Explore
● You can implement a deque (a doubly-ended queue) 

using a B-tree with pointers to the first and last leaves.
● This is sometimes called a finger tree.
● Finger trees are used extensively in purely functional 

programming languages.
● By extending the analysis from here, you can show the 

amortized cost of appending or removing from each end of 
the finger tree is O(1).

● Red/black trees are modeled on 2-3-4 trees. You can 
build a red/black tree from n sorted keys in time O(n) 
this way.
● Great exercise: Explore how to do this, and work out what 

choice of Φ to make.



  

To Summarize



  

Amortized Analysis
● Some data structures accumulate messes slowly, 

then clean up those messes in single, large steps.
● We can assign amortized costs to operations. 

These are fake costs such that summing up the 
amortized costs never underestimates the sum of 
the real costs.

● To do so, we define a potential function Φ that, 
intuitively, measures how “messy” the data 
structure is. We then set

amortized-cost = real-cost + k · ΔΦ.
● For simplicity, we assume that Φ is nonnegative and 

that Φ for an empty data structure is zero.



  

Next Time
● Binomial Heaps

● A very clever way to build a priority queue.
● Lazy Binomial Heaps

● Designing for amortization.
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