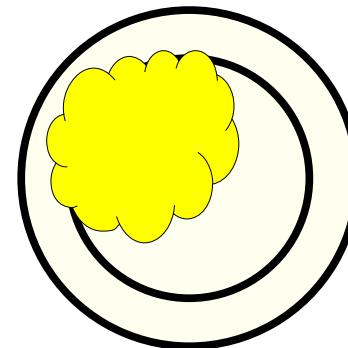


Amortized Analysis

A Motivating Analogy

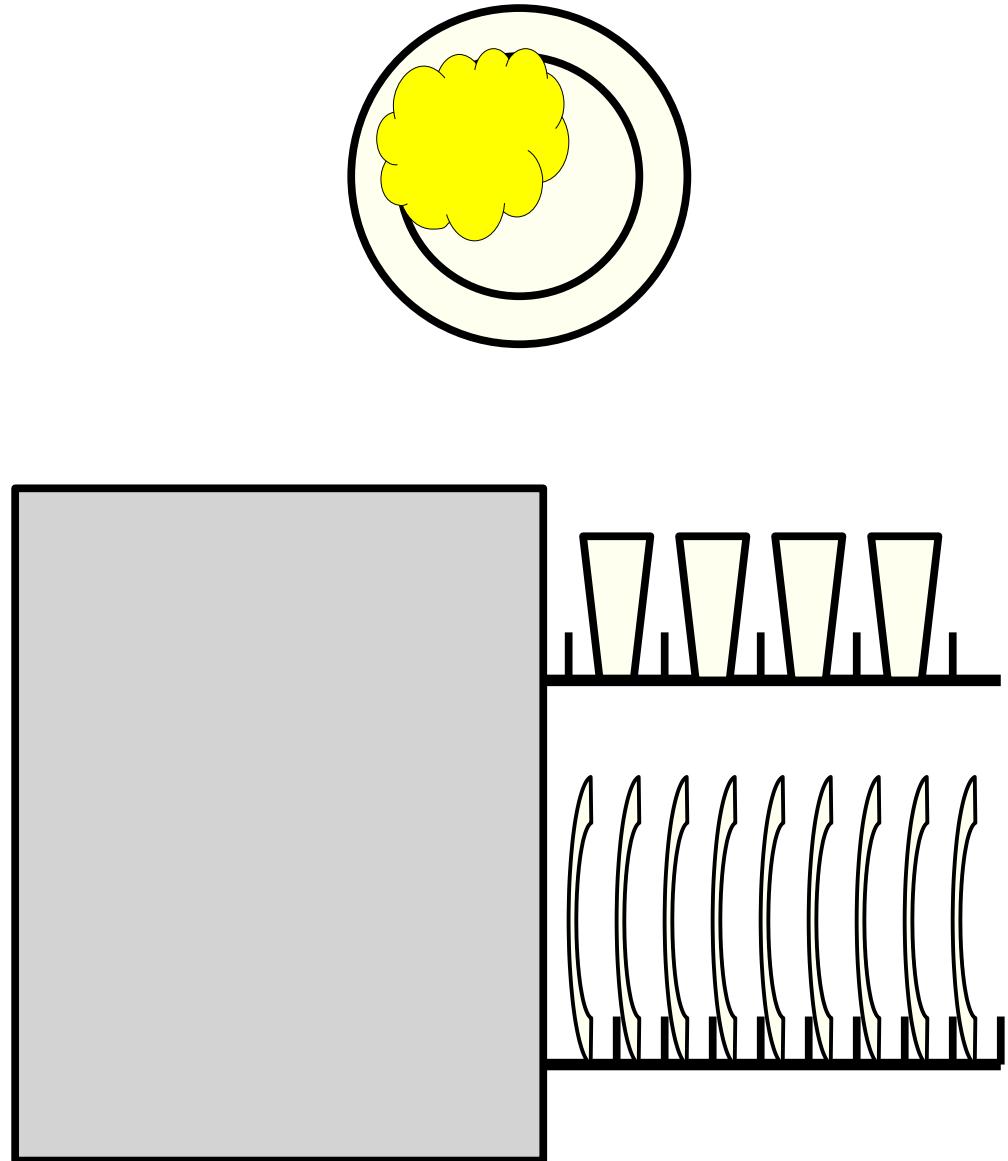
Doing the Dishes

- What do I do with a dirty dish or kitchen utensil?
- ***Option 1:*** Wash it by hand.
- ***Option 2:*** Put it in the dishwasher rack, then run the dishwasher if it's full.



Doing the Dishes

- Washing every individual dish and utensil by hand is *way* slower than using the dishwasher, but I always have access to my plates and kitchen utensils.
- Running the dishwasher is faster in aggregate, but means I may have to wait a bit for dishes to be ready.
- (This is an example of a tradeoff between **throughput** and **latency**.)



Key Idea: Design data structures that trade *per-operation efficiency* for *overall efficiency*.

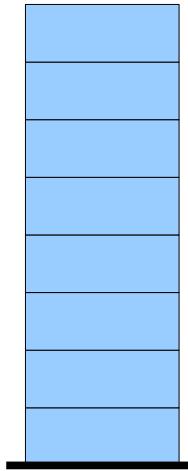
Where We're Going

- ***Amortized Analysis (Today)***
 - A little accounting trickery never hurt anyone, right?
- ***Binomial Heaps (Thursday)***
 - A fast, flexible priority queue that's a great building block for more complicated structures.
- ***Fibonacci Heaps (Next Tuesday)***
 - A priority queue optimized for graph algorithms that, at least in theory, leads to optimal implementations.
- ***Disjoint-Set Forests (Next Thursday)***
 - A data structure for Kruskal's algorithm that is *shockingly* fast in an amortized sense.

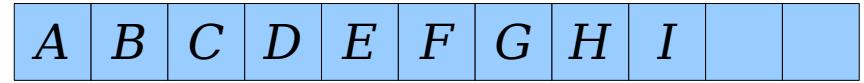
Outline for Today

- ***Amortized Analysis***
 - Trading worst-case efficiency for aggregate efficiency.
- ***Examples of Amortization***
 - Three motivating data structures and algorithms.
- ***Potential Functions***
 - Quantifying messiness and formalizing costs.
- ***Performing Amortized Analyses***
 - How to show our examples are indeed fast.

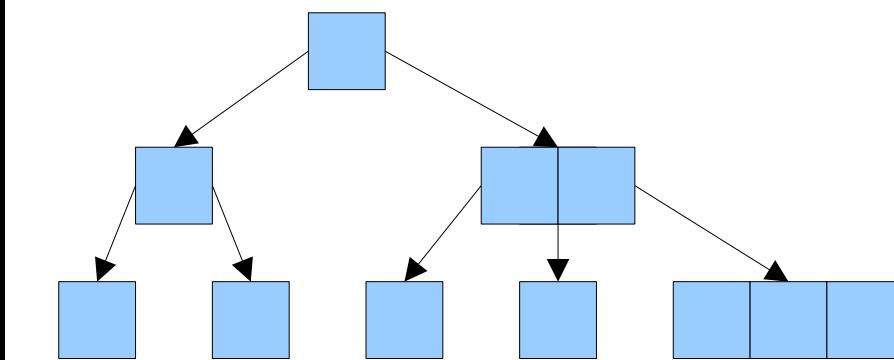
Three Examples



Two-Stack Queues



Dynamic Arrays

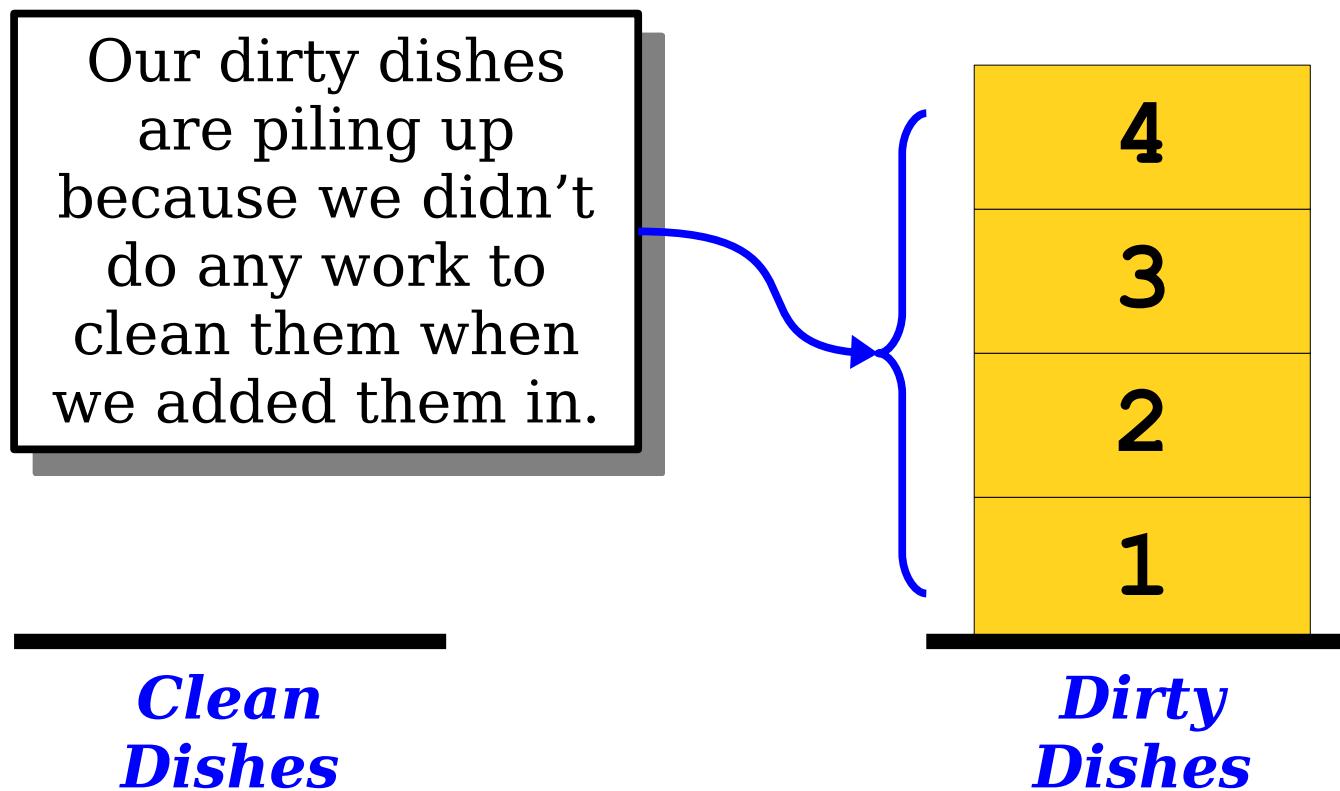


Building B-Trees

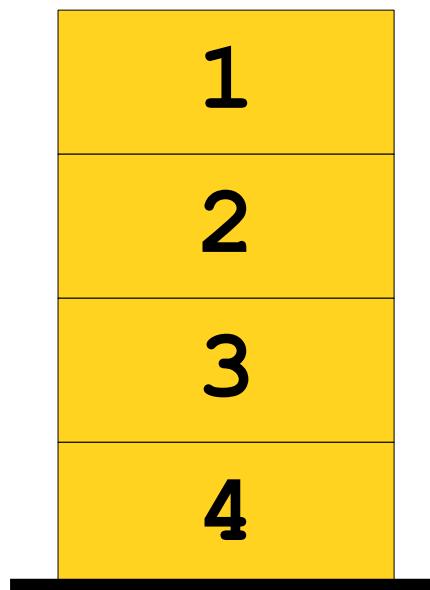
The Two-Stack Queue

- Maintain an ***In*** stack and an ***Out*** stack.
- To enqueue an element, push it onto the ***In*** stack.
- To dequeue an element:
 - If the ***Out*** stack is nonempty, pop it.
 - If the ***Out*** stack is empty, pop elements from the ***In*** stack, pushing them into the ***Out*** stack. Then dequeue as usual.

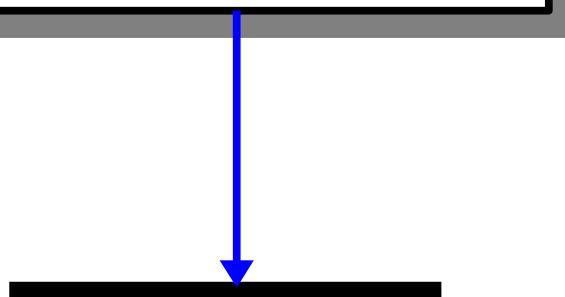
The Two-Stack Queue



The Two-Stack Queue



We just cleaned up
our entire mess
and are back to a
pristine state.

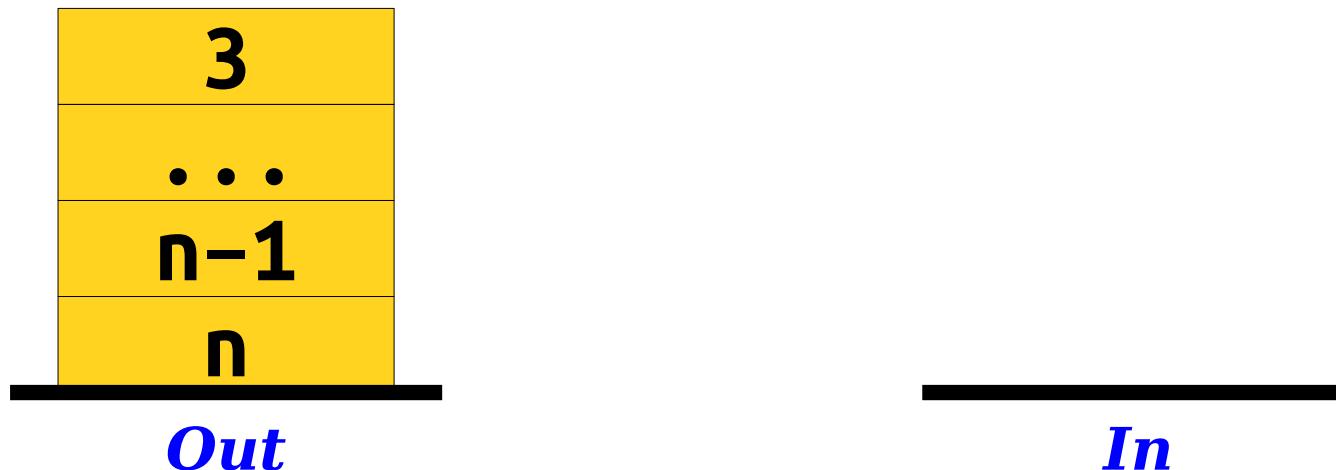


The Two-Stack Queue

- Each enqueue takes time $O(1)$.
 - Just push an item onto the ***In*** stack.
- Dequeues can vary in their runtime.
 - Could be $O(1)$ if the ***Out*** stack isn't empty.
 - Could be $\Theta(n)$ if the ***Out*** stack is empty.

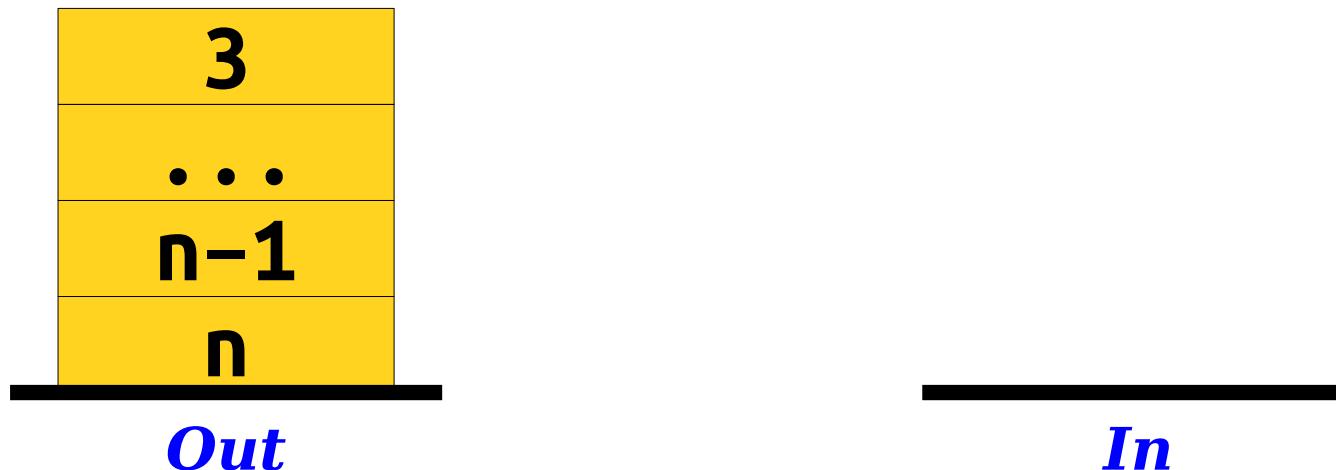
The Two-Stack Queue

- **Intuition:** We only do expensive dequeues after a long run of cheap enqueues.
- Think “dishwasher:” we very slowly introduce a lot of dirty dishes that get cleaned up all at once.
- Provided we clean up all the dirty dishes at once, and provided that dirty dishes accumulate slowly, this is a fast strategy!



The Two-Stack Queue

- **Key Fact:** Any series of n operations on an (initially empty) two-stack queue will take time $O(n)$.
- **Why?**
- Each item is pushed into at most two stacks and popped from at most two stacks.
- Adding up the work done per element across all n operations, we can do at most $O(n)$ work.

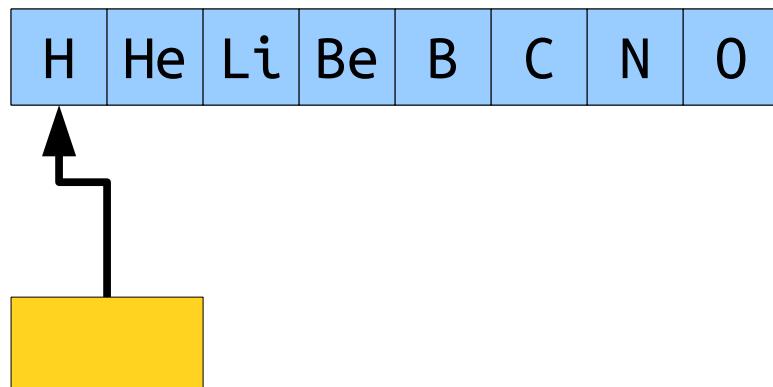


The Two-Stack Queue

- It's correct but misleading to say the cost of a dequeue is $O(n)$.
 - This is comparatively rare.
- It's wrong, but useful, to pretend the cost of a dequeue is $O(1)$.
 - Some operations take more time than this.
 - However, if we pretend each operation takes time $O(1)$, then the sum of all the costs never underestimates the total.
- **Question:** What's an honest, accurate way to describe the runtime of the two-stack queue?

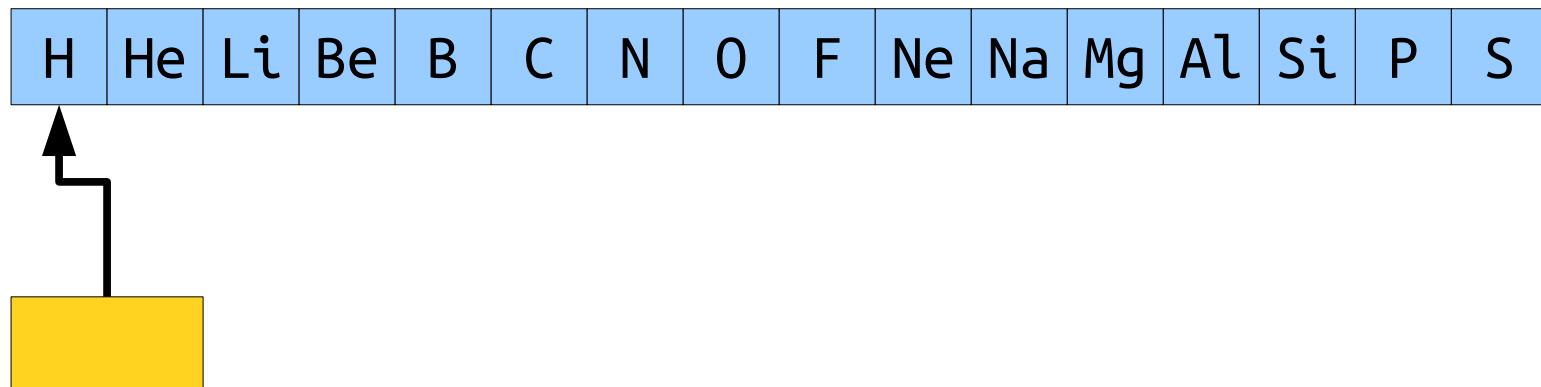
Dynamic Arrays

- A ***dynamic array*** is the most common way to implement a list of values.
- Maintain an array slightly bigger than the one you need. When you run out of space, double the array size and copy the elements over.



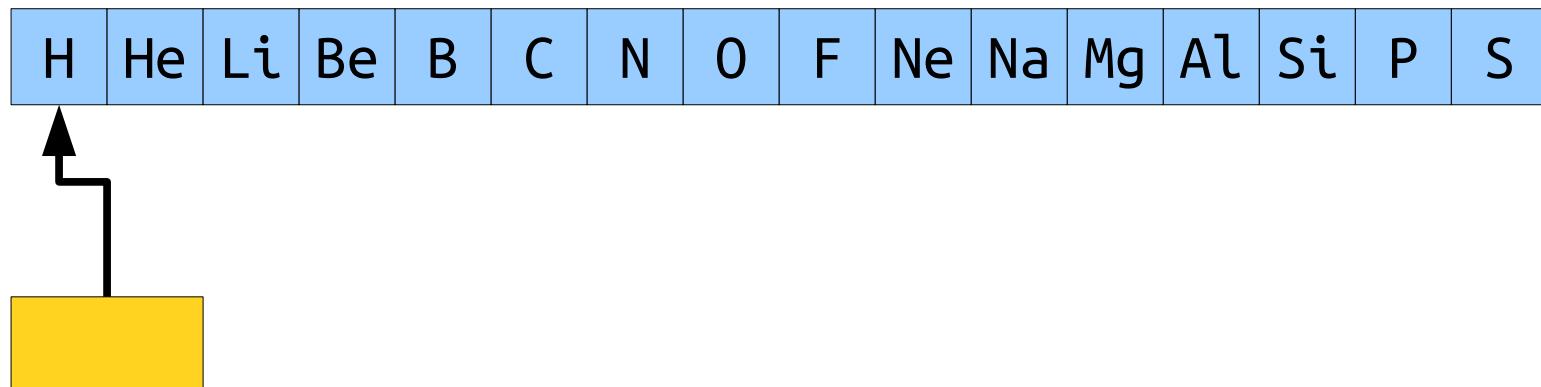
Dynamic Arrays

- A ***dynamic array*** is the most common way to implement a list of values.
- Maintain an array slightly bigger than the one you need. When you run out of space, double the array size and copy the elements over.



Dynamic Arrays

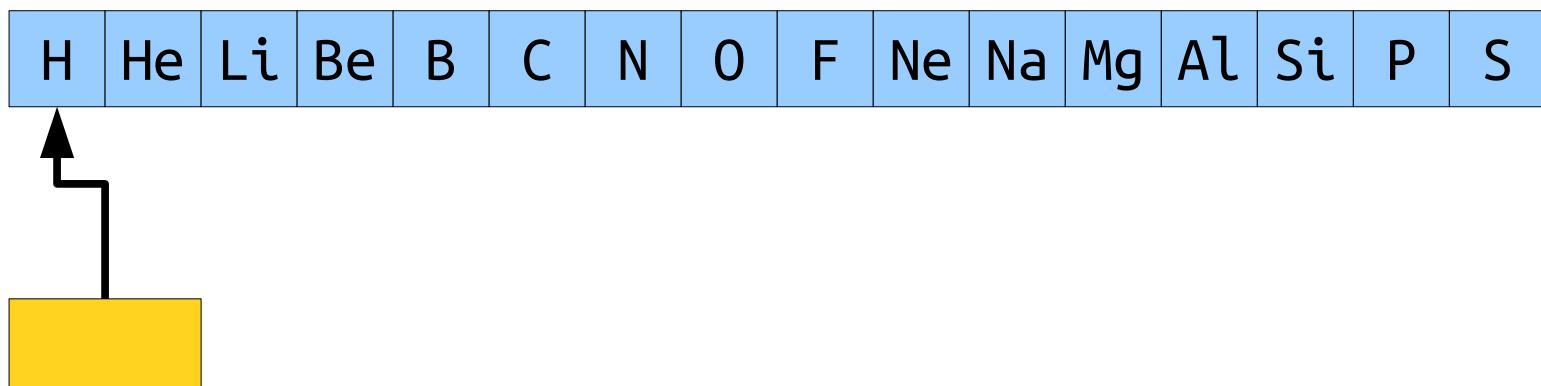
- Most appends to a dynamic array take time $O(1)$.
- Infrequently, we do $\Theta(n)$ work to copy all n elements from the old array to a new one.
- Think “dishwasher:”
 - We slowly accumulate “messes” (filled slots).
 - We periodically do a large “cleanup” (copying the array).
- **Claim:** The cost of doing n appends to an initially empty dynamic array is always $O(n)$.



Dynamic Arrays

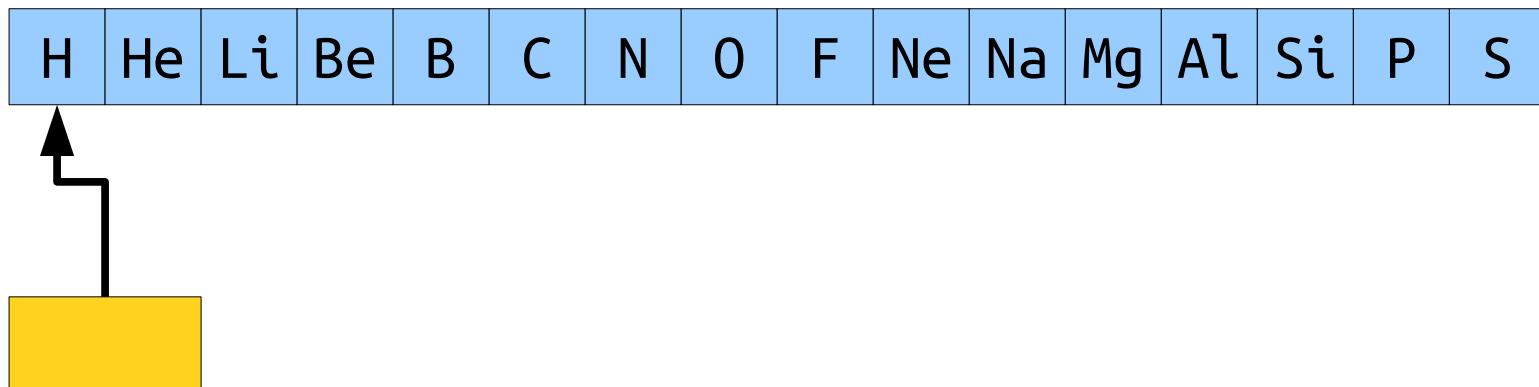
- **Claim:** Appending n elements always takes time $O(n)$.
- The array doubles at sizes $2^0, 2^1, 2^2, \dots$, etc.
- The very last doubling is at the largest power of two less than n . This is at most $2^{\lfloor \log_2 n \rfloor}$. (Do you see why?)
- Total work done across all doubling is at most

$$\begin{aligned} 2^0 + 2^1 + \dots + 2^{\lfloor \log_2 n \rfloor} &= 2^{\lfloor \log_2 n \rfloor + 1} - 1 \\ &\leq 2^{\log_2 n + 1} \\ &= 2n. \end{aligned}$$



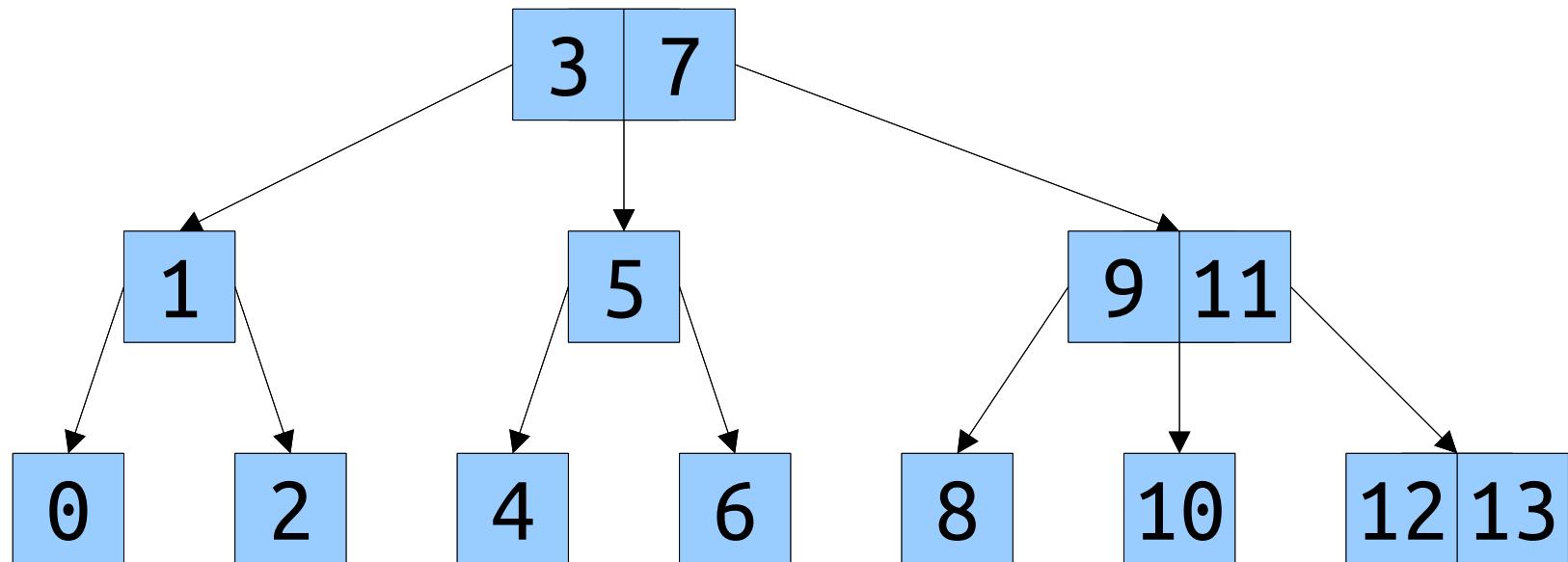
Dynamic Arrays

- It's correct but misleading to say an append costs $O(n)$.
 - This is comparatively rare.
- It's wrong, but useful, to pretend an append costs $O(1)$.
 - Some operations take more time than this.
 - However, pretending each operation takes $O(1)$ time never underestimates the true total runtime.
- **Question:** What's an honest, accurate way to describe the runtime of the dynamic array?



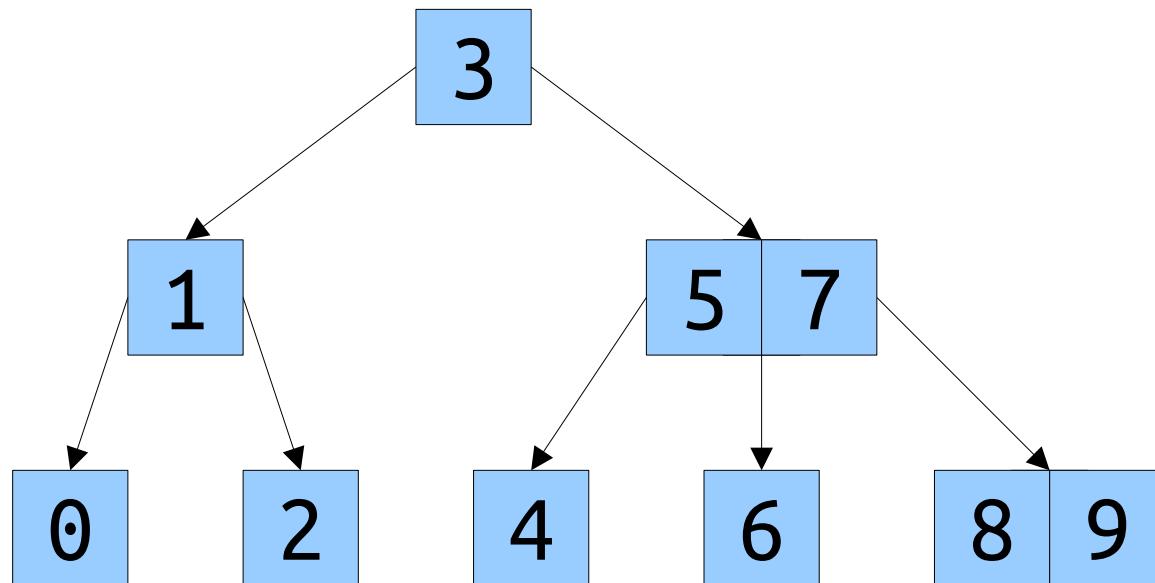
Building B-Trees

- You're given a sorted list of n values and a value of b .
- What's the most efficient way to construct a B-tree of order b holding these n values?
- **One Option:** Think really hard, calculate the shape of a B-tree of order b with n elements in it, then place the items into that B-tree in sorted order.
- Is there an easier option?



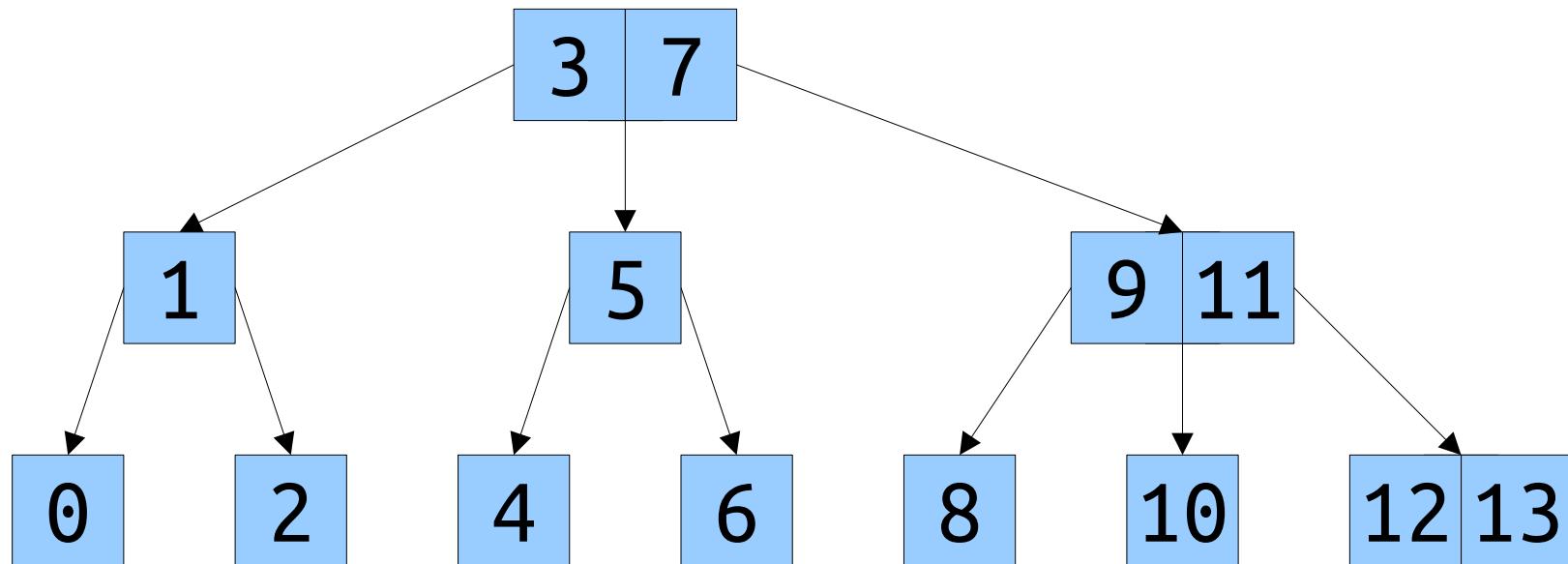
Building B-Trees

- ***Idea 1:*** Insert the items into an empty B-tree in sorted order.
- Cost: $\Omega(n \log_b n)$, due to the top-down search.
- ***Can we do better?***



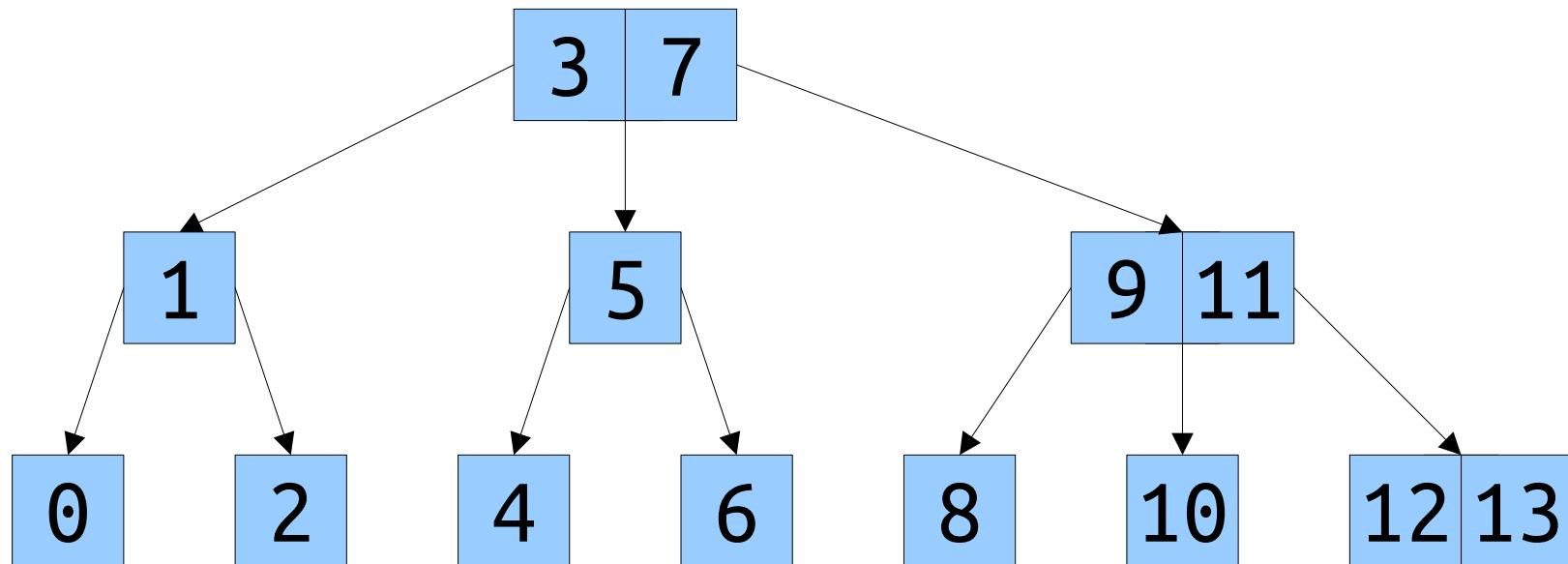
Building B-Trees

- **Idea 2:** Since all insertions will happen at the rightmost leaf, store a pointer to that leaf. Add new values by appending to this leaf, then doing any necessary splits.
- **Question:** How fast is this?



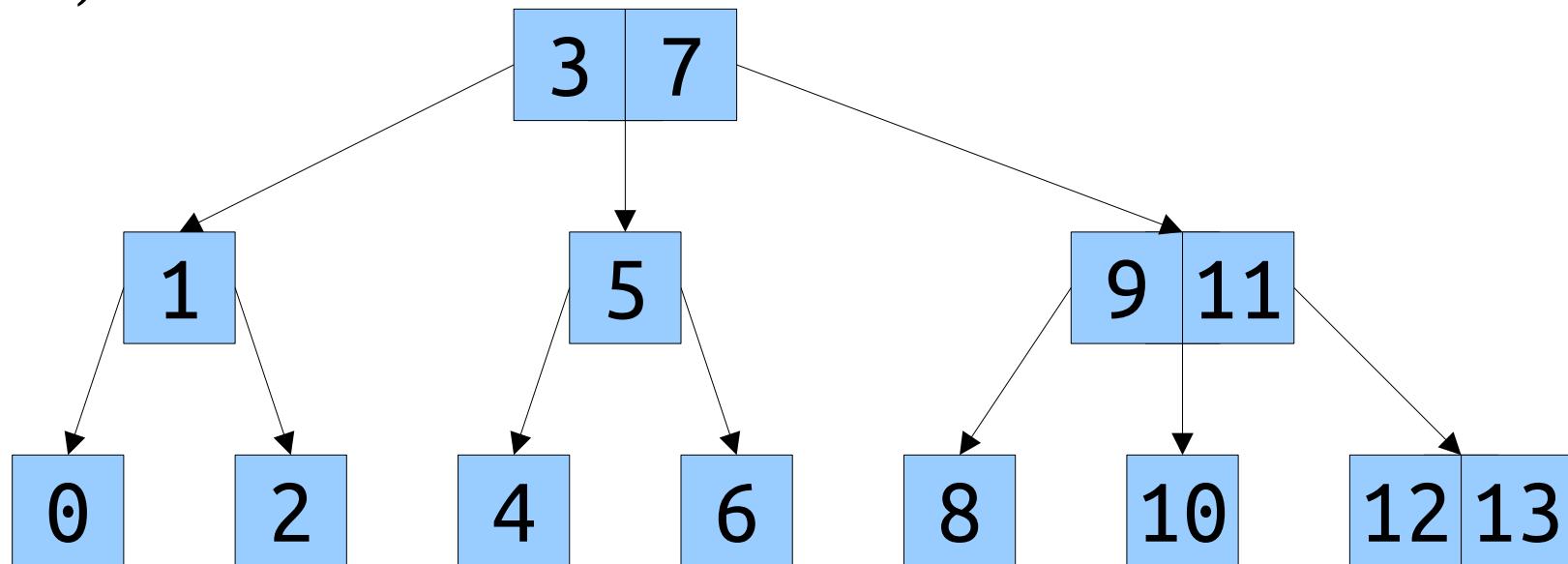
Building B-Trees

- The cost of an insert varies based on the shape of the tree.
 - If no splits are required, the cost is $O(1)$.
 - If one split is required, the cost is $O(b)$.
 - If we have to split all the way up, the cost is $O(b \log_b n)$.
- Using our worst-case cost across n inserts gives a runtime bound of $O(nb \log_b n)$
- **Claim:** The cost of n inserts is always $O(n)$.



Building B-Trees

- Of all the n insertions into the tree, a roughly $1/b$ fraction will split a node in the bottom layer of the tree (a leaf).
- Of those, roughly a $1/b$ fraction will split a node in the layer above that.
- Of those, roughly a $1/b$ fraction will split a node in the layer above that.
- (etc.)



Building B-Trees

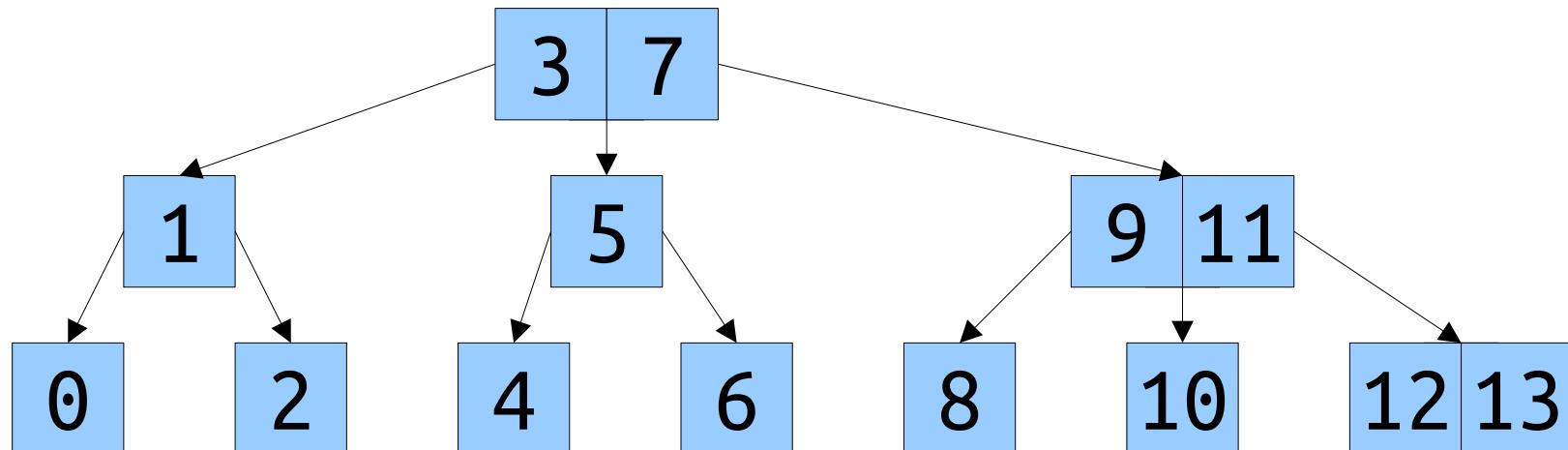
- Total number of splits:

$$\begin{aligned}& \frac{n}{b} \cdot \left(1 + \frac{1}{b} \cdot \left(1 + \frac{1}{b} \cdot \left(1 + \frac{1}{b} \cdot (\dots) \right) \right) \right) \\&= \frac{n}{b} \cdot \left(1 + \frac{1}{b} + \frac{1}{b^2} + \frac{1}{b^3} + \frac{1}{b^4} + \dots \right) \\&= \frac{n}{b} \cdot \Theta(1) \\&= \Theta\left(\frac{n}{b}\right)\end{aligned}$$

- Total cost of those splits: $\Theta(n)$.

Building B-Trees

- It is correct but misleading to say the cost of an insert is $O(b \log_b n)$.
 - This is comparatively rare.
- It is wrong, but useful, to pretend that the cost of an insert is $O(1)$.
 - Some operations take more time than this.
 - However, pretending each insert takes time $O(1)$ never underestimates the total amount of work done across all operations.
- **Question:** What's an honest, accurate way to describe the cost of inserting one more value?



Amortized Analysis

The Setup

- We now have three examples of data structures where
 - *individual operations may be slow*, but
 - *any series of operations is fast*.
- Giving weak upper bounds on the cost of each operation is not useful for making predictions.
- How can we clearly communicate when a situation like this one exists?

Amortized Analysis

- **Key Idea:** Assign each operation a (fake!) cost called its **amortized cost** such that, *for any series of operations performed*, the following is true:

$$\sum \text{amortized-cost} \geq \sum \text{real-cost}$$

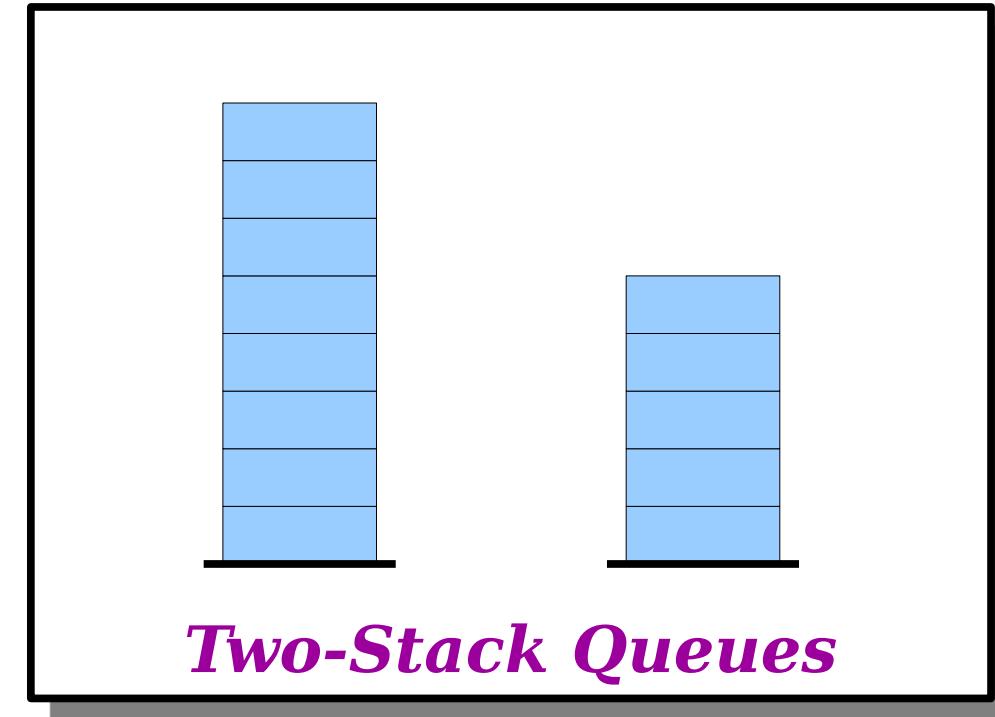
- Amortized costs shift work backwards from expensive operations onto cheaper ones.
 - Cheap operations are artificially made more expensive to pay for future cleanup work.
 - Expensive operations are artificially made cheaper by shifting the work backwards.

Where We're Going

- The **amortized** cost of an enqueue or dequeue into a two-stack queue is $O(1)$.
- Any sequence of n operations on a two-stack queue will take time

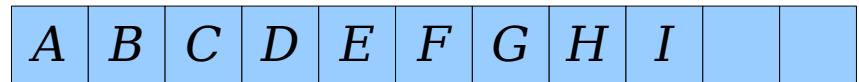
$$n \cdot O(1) = O(n).$$

- However, each individual operation may take more than $O(1)$ time to complete.



Where We're Going

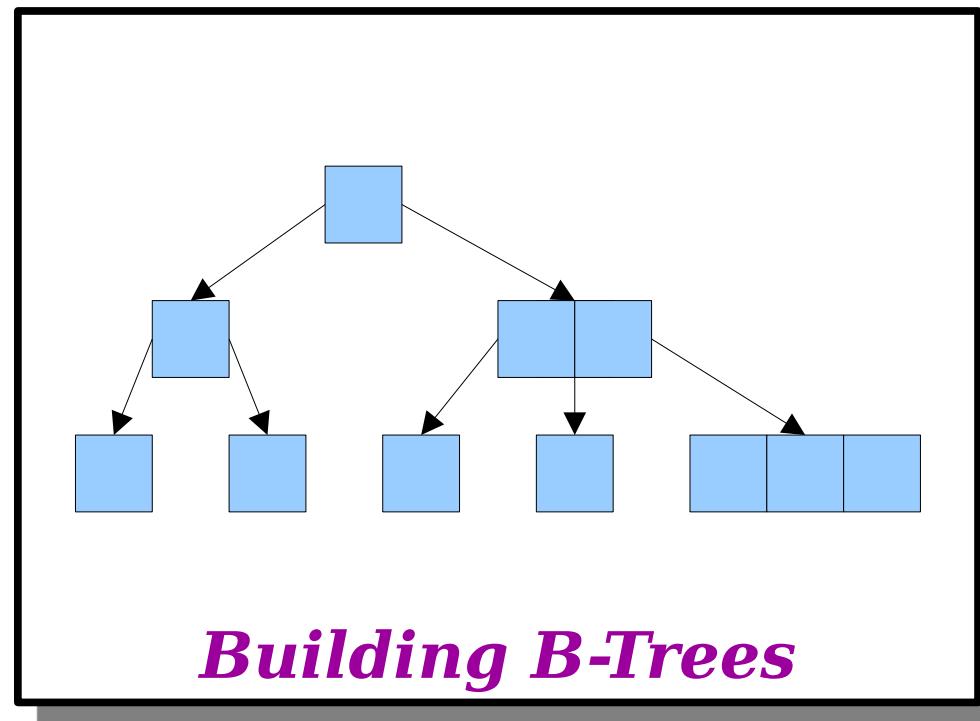
- The ***amortized*** cost of appending to a dynamic array is $O(1)$.
- Any sequence of n appends to a dynamic array will take time
$$n \cdot O(1) = O(n).$$
- However, each individual operation may take more than $O(1)$ time to complete.



Dynamic Arrays

Where We're Going

- The **amortized** cost of inserting a new element at the end of a B-tree, assuming we have a pointer to the rightmost leaf, is $O(1)$.
- Any sequence of n appends will take time
$$n \cdot O(1) = O(n).$$
- However, each individual operation may take more than $O(1)$ time to complete.



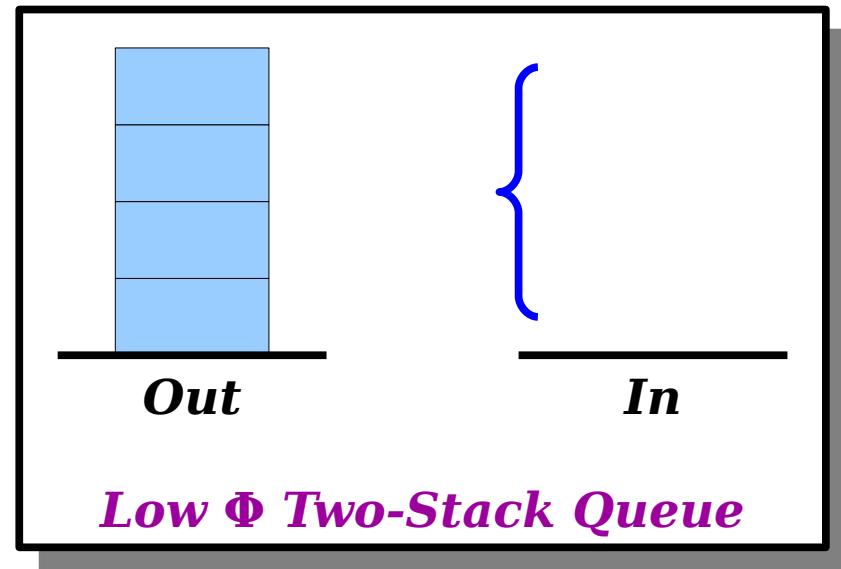
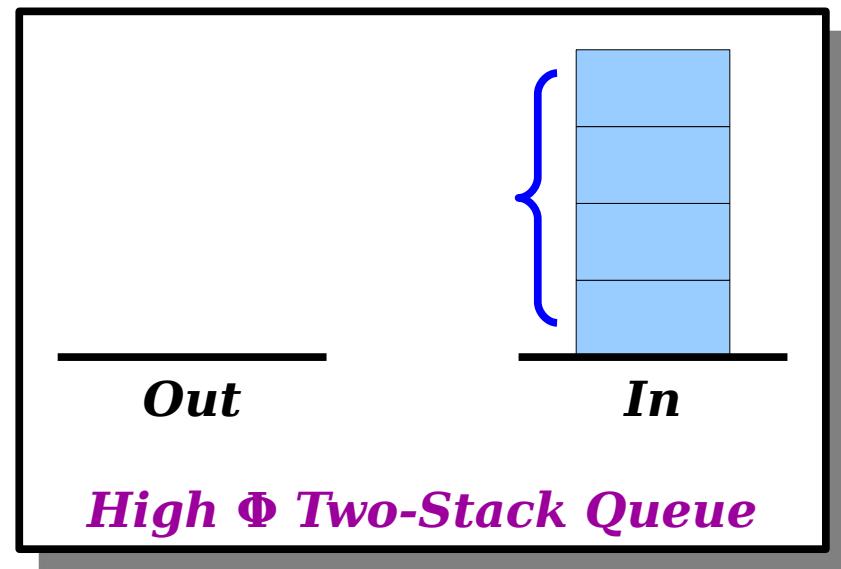
Formalizing This Idea

Assigning Amortized Costs

- The approach we've taken so far for assigning amortized costs is called an ***aggregate analysis***.
 - Directly compute the maximum possible work done across any sequence of operations, then divide that by the number of operations.
- This approach works well here, but it doesn't scale well to more complex data structures.
 - What if different operations contribute to / clean up messes in different ways?
 - What if it's not clear what sequence is the worst-case sequence of operations?
- In practice, we tend to use a different strategy called the ***potential method*** to assign amortized costs.

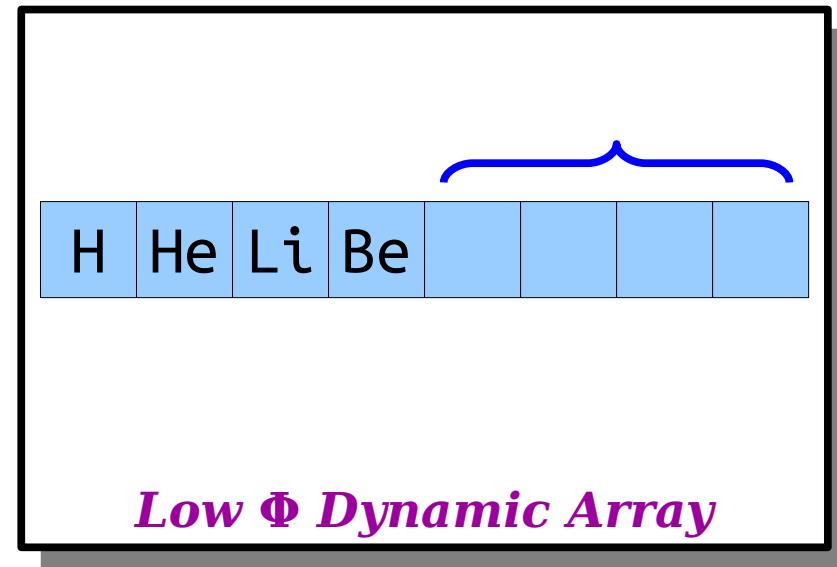
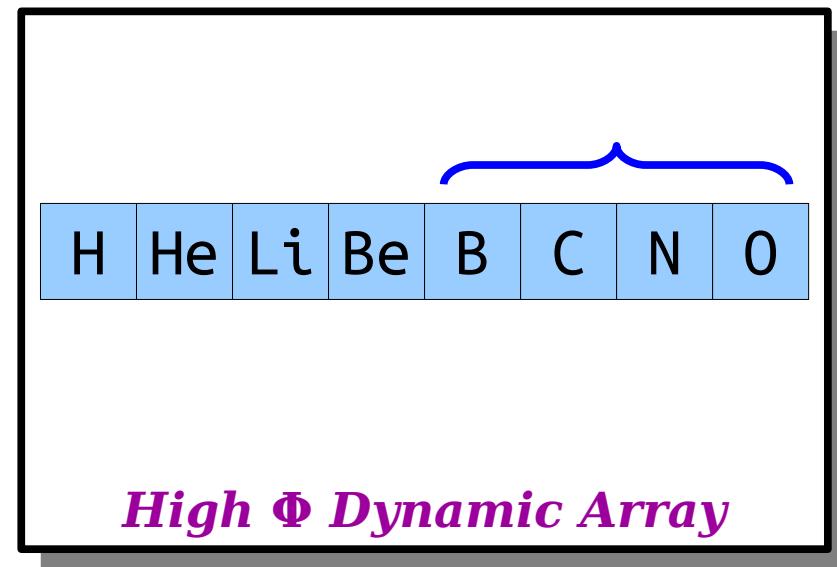
Potential Functions

- To assign amortized costs, we'll need to measure how “messy” the data structure is.
- For each data structure, we define a ***potential function*** Φ that, in a sense, “quantifies messiness.”
 - Φ is small when the data structure is “clean,” and
 - Φ is large when the data structure is “messy.”



Potential Functions

- To assign amortized costs, we'll need to measure how “messy” the data structure is.
- For each data structure, we define a ***potential function*** Φ that, in a sense, “quantifies messiness.”
 - Φ is small when the data structure is “clean,” and
 - Φ is large when the data structure is “messy.”



Potential Functions

- Once we have Φ , we can start looking, for each operation, at how Φ changes.
 - If an operation makes things “messier,” then Φ increases.
 - If an operation makes things “cleaner,” then Φ decreases.
- What we want to have happen:
 - If an operation increases Φ , we artificially raise its cost.
 - If an operation decreases Φ , we artificially lower its cost.
- **Why?**

Potential Functions

- Define the amortized cost of an operation to be

$$\text{amortized-cost} = \text{real-cost} + k \cdot \Delta\Phi$$

where k is a constant under our control and $\Delta\Phi$ is the difference between Φ just after the operation finishes and Φ just before the operation started:

$$\Delta\Phi = \Phi_{\text{after}} - \Phi_{\text{before}}$$

- Intuitively:
 - If Φ **increases**, the data structure got “**messier**,” and the amortized cost is **higher** than the real cost to account for future cleanup costs.
 - If Φ **decreases**, the data structure got “**cleaner**,” and the amortized cost is **lower** than the real cost

Why This Works

$$\begin{aligned}\sum \text{amortized-cost} &= \sum (\text{real-cost} + k \cdot \Delta\Phi) \\ &= \sum \text{real-cost} + k \cdot \sum \Delta\Phi \\ &= \sum \text{real-cost} + k \cdot (\Phi_{end} - \Phi_{start}) \\ &\geq \sum \text{real-cost}\end{aligned}$$

Let's make two assumptions:

$$\begin{aligned}\Phi &\geq 0. \\ \Phi_{start} &= 0.\end{aligned}$$

The Story So Far

- We will assign amortized costs to each operation such that

$$\sum \text{amortized-cost} \geq \sum \text{real-cost}$$

- To do so, define a ***potential function*** Φ such that
 - Φ measures how “messy” the data structure is,
 - $\Phi_{start} = 0$, and
 - $\Phi \geq 0$.
- Then, define amortized costs of operations as

$$\text{amortized-cost} = \text{real-cost} + k \cdot \Delta\Phi$$

for a choice of k under our control.

Theorem: The amortized cost of any enqueue or dequeue operation on a two-stack queue is $O(1)$.

Proof: Let Φ be the height of the *In* stack in the two-stack queue. Each enqueue operation does a single push and increases the height of the *In* stack by one. Therefore, its amortized cost is

$$O(1) + k \cdot \Delta\Phi = O(1) + k \cdot 1 = O(1).$$

Now, consider a dequeue operation. If the *Out* stack is nonempty, then the dequeue does $O(1)$ work and does not change Φ . Its cost is therefore

$$O(1) + k \cdot \Delta\Phi = O(1) + k \cdot 0 = O(1).$$

Otherwise, the *Out* stack is empty. Suppose the *In* stack has n elements. The dequeue does $O(n)$ work to pop the elements from the *In* stack and push them onto the *Out* stack, followed by one additional pop for the dequeue. This is $O(n)$ total work.

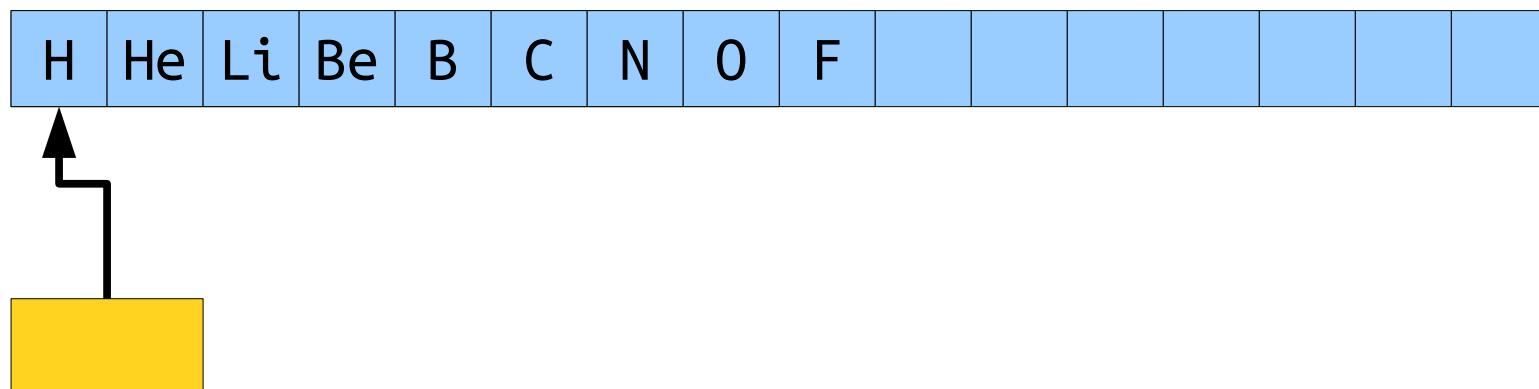
At the beginning of this operation, we have $\Phi = n$. At the end of this operation, we have $\Phi = 0$. Therefore, $\Delta\Phi = -n$, so the amortized cost of the operation is

$$O(n) + k \cdot -n = O(1),$$

assuming we pick k to cancel out the constant factor hidden in the $O(n)$ term. ■

Analyzing Dynamic Arrays

- ***Goal:*** Choose a potential function Φ such that the amortized cost of an append is $O(1)$.
- ***Initial (wrong!) guess:*** Set Φ to be the number of free slots left in the array.



Analyzing Dynamic Arrays

- ***Intuition:*** Φ should measure how “messy” the data structure is.
 - Having lots of free slots means there’s very little mess.
 - Having few free slots means there’s a lot of mess.
- We basically got our potential function backwards. Oops.
- ***Question:*** What should Φ be?

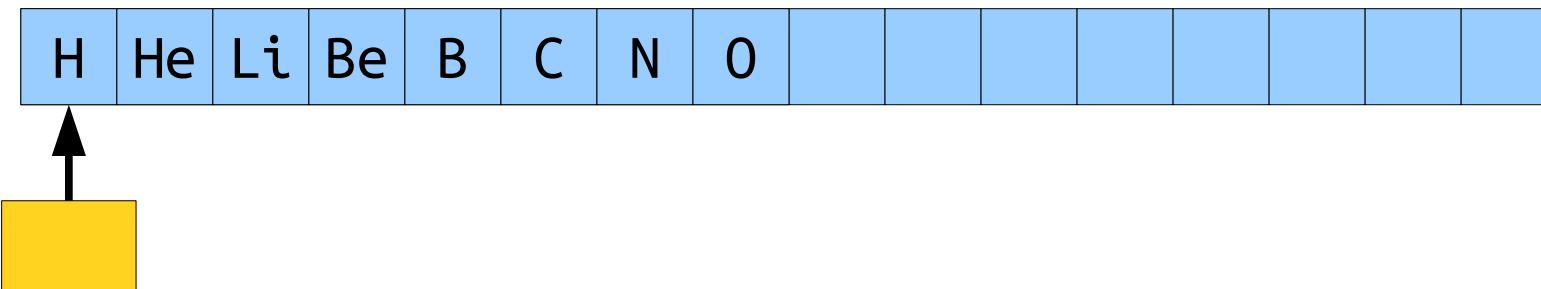
Analyzing Dynamic Arrays

- The amortized cost of an append is

$$\text{amortized-cost} = \text{real-cost} + k \cdot \Delta\Phi.$$

- When we double the array size, our real cost is $\Theta(n)$. We need $\Delta\Phi$ to be something like $-n$.
- **Goal:** Pick Φ so that
 - when there are no slots left, $\Phi \approx n$, and
 - right after we double the array size, $\Phi \approx 0$.
- With some trial and error, we can come up with

$$\Phi = \#\text{elems} - \#\text{free-slots}$$



Theorem: The amortized cost of an append to a dynamic array is $O(1)$.

Proof: Suppose the dynamic array has initial capacity $2C = O(1)$. Then, define $\Phi = \max\{ 0, n - \#free-slots \}$, where n is the number of elements stored in the dynamic array. Note that for $n < C$ that an append simply fills in a free slot and leaves $\Phi = 0$, so the amortized cost of such an append is $O(1)$. Otherwise, we have $n > C$ and $\Phi = n - \#free-slots$.

Consider any append. If the append does not trigger a resize, it does $O(1)$ work, increases n by one, and decreases $\#free-slots$ by one, so the amortized cost is

$$O(1) + k \cdot \Delta\Phi = O(1) + k \cdot 2 = O(1).$$

Otherwise, the operation copies n elements into a new array twice as large as before, increasing the number of free slots to n , then fills one of those slots. Just before the operation we had $\Phi = n$, and just after the operation we have $\Phi = 2$. Therefore, the amortized cost is

$$O(n) + k \cdot \Delta\Phi = O(n) + k \cdot (2 - n) = O(n) - nk + 2k,$$

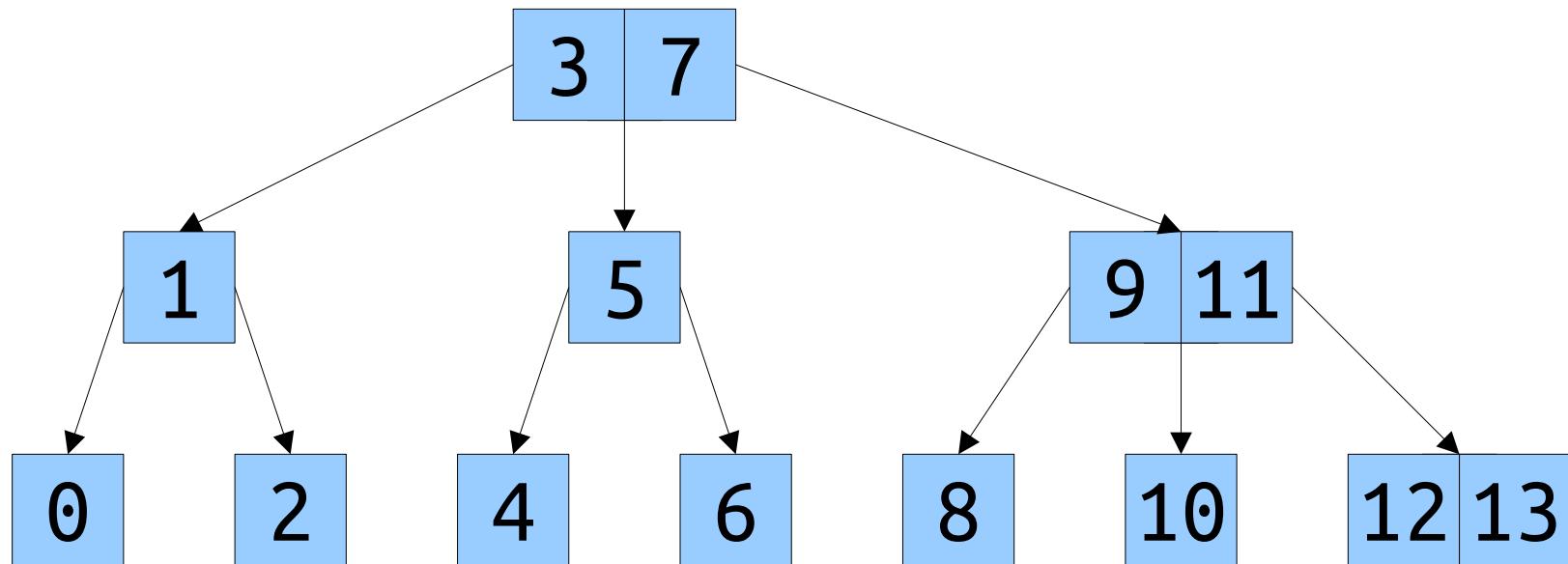
which can be made to equal $O(1)$ by choosing the the k term to match the constant hidden in the $O(n)$ term. ■

Some Exercises

- Suppose we grow the array not by a factor of two, but by a fixed constant $\alpha > 1$. Find a choice of Φ so that the amortized cost of an append is $O(1)$.
- Suppose we also allow elements to be removed from the array, and when it's $\frac{1}{4}$ full we shrink it by a factor of two. Find a choice of Φ so the amortized cost of appending or removing the last element is $O(1)$.

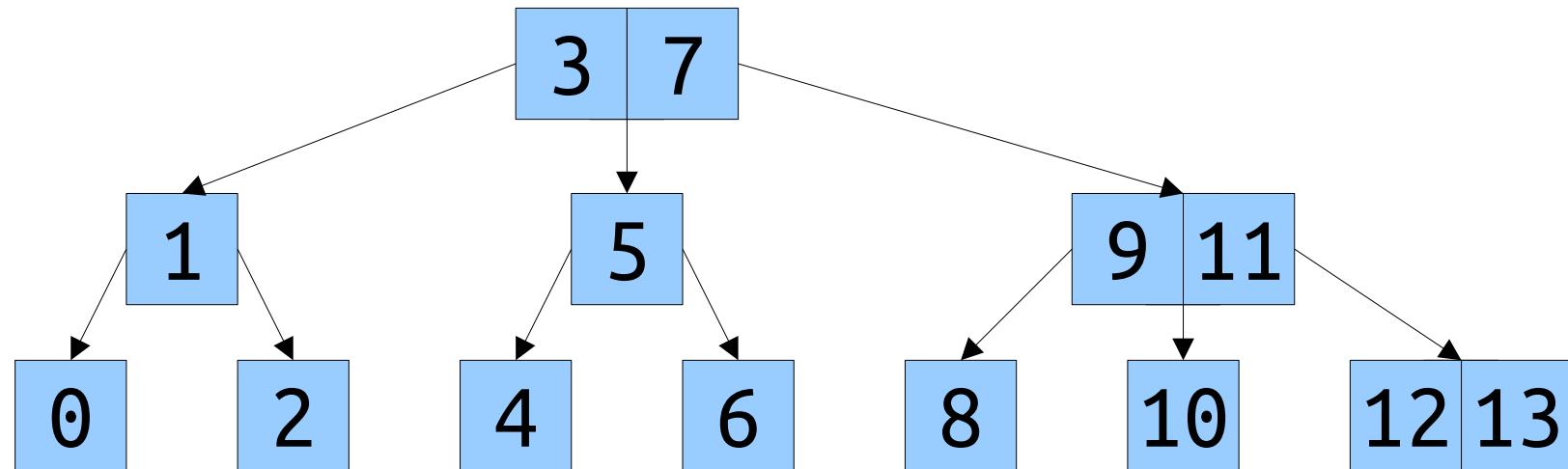
Building B-Trees

- **Algorithm:** Store a pointer to the rightmost leaf. To add an item, append it to the rightmost leaf, splitting and kicking the median key up if we are out of space.



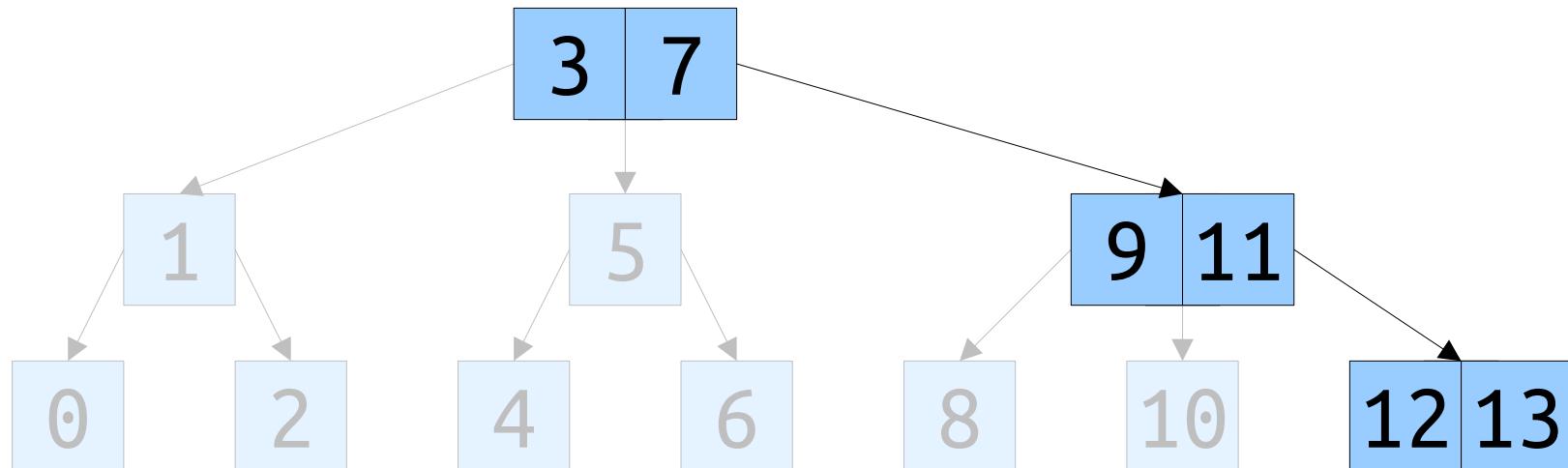
Building B-Trees

- What is the actual cost of appending an element?
 - Suppose that we perform splits at L layers in the tree.
 - Each split takes time $\Theta(b)$ to copy and move keys around.
 - Total cost: $\Theta(bL)$.
- **Goal:** Pick a potential function Φ so that we can offset this cost and make each append cost amortized $O(1)$.



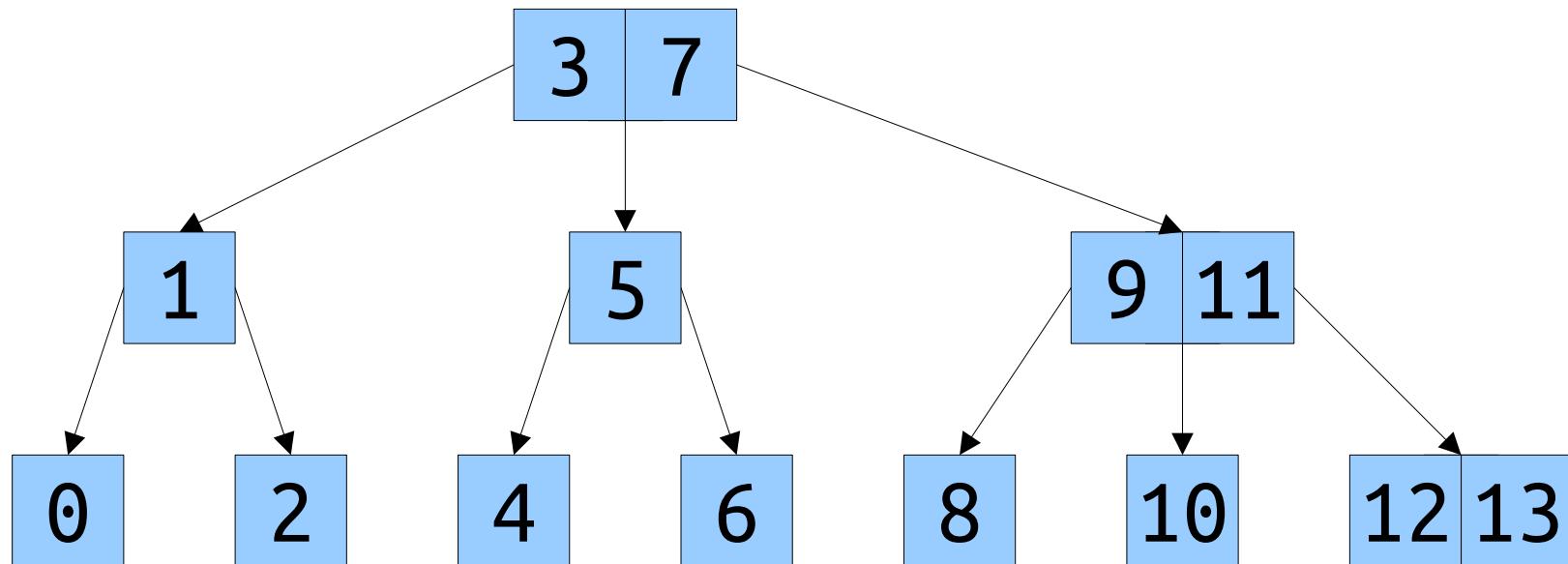
Building B-Trees

- Our potential function should, intuitively, quantify how “messy” our data structure is.
- Some observations:
 - We only care about nodes in the right spine of the tree.
 - Nodes in the right spine slowly have keys added to them. When they split, they lose (about) half of their keys.
- **Idea:** Set Φ to be the number of keys in the right spine of the tree.



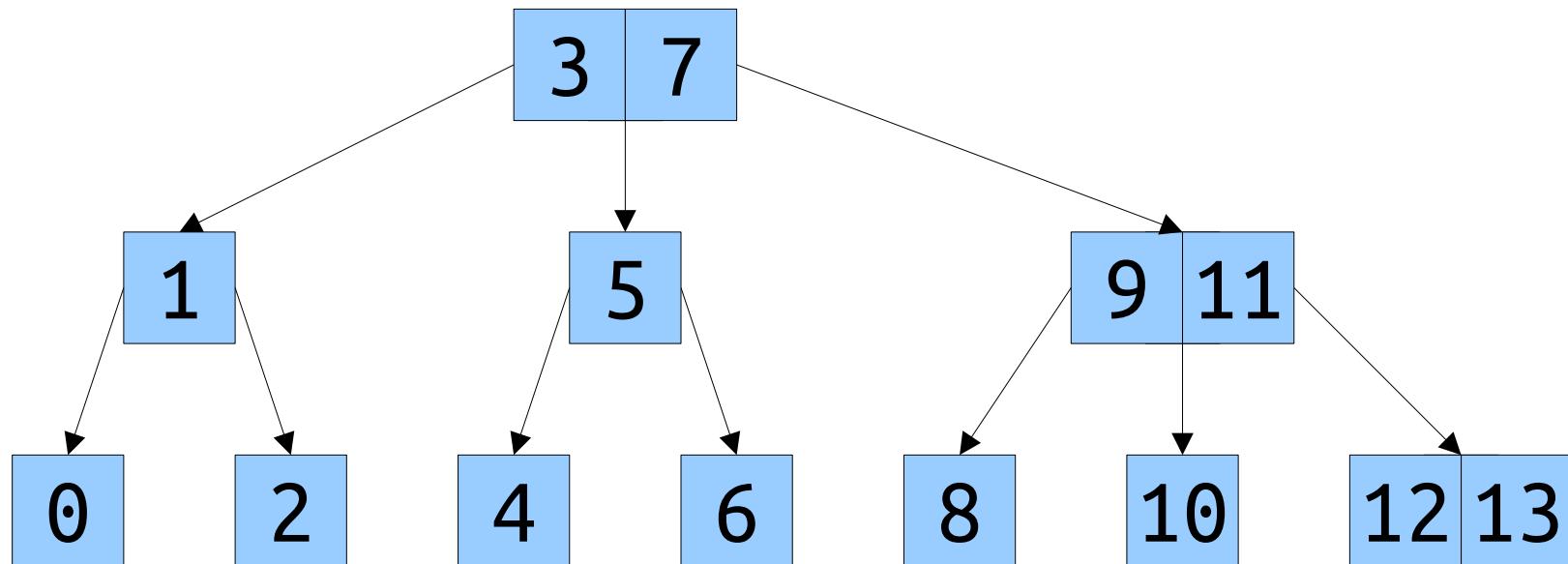
Building B-Trees

- Let Φ be the number of keys on the right spine.
- Each split moves (roughly) half the keys from the split node into a node off the right spine.
- Change in potential per split: $-\Theta(b)$.
- Net $\Delta\Phi$: **$-\Theta(bL)$** .



Building B-Trees

- Actual cost of an append that does L splits: $O(bL)$.
- $\Delta\Phi$ for that operation: $-\Theta(bL)$.
- Amortized cost: **O(1)**.



Theorem: The amortized cost of appending to a B-tree by inserting it into the rightmost leaf node and applying fixup rules is $O(1)$.

Proof: Assume we are working with a B-tree of order b . Let Φ be the number of nodes on the right spine of the B-tree.

Suppose we insert a value into the tree using the algorithm described above. Suppose this causes L nodes to be split. Each of those splits requires $\Theta(b)$ work for a net total of $\Theta(bL)$ work.

Each of those L splits moves $\Theta(b)$ keys off of the right spine of the tree, decreasing Φ by $\Theta(b)$ for a net drop in potential of $-\Theta(bL)$. In the layer just above the last split, we add one more key into a node, increasing Φ by one. Therefore, $\Delta\Phi = -\Theta(bL)$.

Overall, this tells us that the amortized cost of inserting a key this way is

$$\Theta(bL) + k \cdot \Delta\Phi = \Theta(bL) - k \cdot \Theta(bL),$$

which can be made to be $O(1)$ by choosing k to equate the constants hidden in the O and Θ terms. ■

More to Explore

- You can implement a **deque** (a doubly-ended queue) using a B-tree with pointers to the first and last leaves.
 - This is sometimes called a **finger tree**.
 - Finger trees are used extensively in purely functional programming languages.
 - By extending the analysis from here, you can show the amortized cost of appending or removing from each end of the finger tree is $O(1)$.
- Red/black trees are modeled on 2-3-4 trees. You can build a red/black tree from n sorted keys in time $O(n)$ this way.
 - **Great exercise:** Explore how to do this, and work out what choice of Φ to make.

To Summarize

Amortized Analysis

- Some data structures accumulate messes slowly, then clean up those messes in single, large steps.

- We can assign **amortized** costs to operations. These are fake costs such that summing up the amortized costs never underestimates the sum of the real costs.

- To do so, we define a potential function Φ that, intuitively, measures how “messy” the data structure is. We then set

$$\text{amortized-cost} = \text{real-cost} + k \cdot \Delta\Phi.$$

- For simplicity, we assume that Φ is nonnegative and that Φ for an empty data structure is zero.

Next Time

- ***Binomial Heaps***
 - A very clever way to build a priority queue.
- ***Lazy Binomial Heaps***
 - Designing for amortization.